
EFFECTIVE DATE

(07-10-2020)

PURPOSE

(1) This transmits revised IRM 2.5.3, Systems Development, Programming and Source Code Standards.

MATERIAL CHANGES

(1) Changed from Chief Information Officer (CIO) Gina Garza to Acting Chief Information Officer (ACIO),
Nancy Sieger

(2) Manual Transmittal - Added Background section

(3) 2.5.3.1, Added section 1, Program Scope and Objective

(4) 2.5.3.1.1, Added subsection 1 - Background

(5) 2.5.3.1.2, Added subsection 1 - Authority

(6) 2.5.3.1.3, Added subsection Roles and Responsibilities (1 - 10)

(7) 2.5.3.1.4, Added Application Development Responsibilities

(8) 2.5.3.1.5, Added subsection 1 - Program Management and Review (1) - (3)

(9) 2.5.3.1.6, Added subsection 1 - Program Controls

(10) 2.5.3.1.7, Added subsection 1 - Acronyms and Terms

(11) 2.5.3.2, Added subsection 1 - Related Resources

(12) 2.5.3.4, Removed subsection1 Purpose from under Section 1 Introduction and moved to section 1
Program Scope and Objective

(13) 2.5.3.4.2, Definitions - Removed title Definitions, and moved Exhibit information under it

(14) 2.5.3.5, Federal Government Applications Standards and Guidance

(15) 2.5.3.5, Introduction - Added line (8) The subsection, Assembler Programming addresses topics
specific to Assembler Programming, removed the definition, and changed grammar

(16) 2.5.3.5.1, Added Application Security Control Frameworks

(17) 2.5.3.5.1.1, Added Application Security Controls

(18) 2.5.3.5.4 (1), IRM 2.5.2, Software System Testing is obsolete - Changed to IRM 2.127.2 , Information
Technology Testing Process and Procedures

(19) 2.5.3.5.4 (1), Changed last bullet from Java Programming Language, Sun Microsystems, Inc. to
Oracle Corporation

(20) 2.5.3.5.5, Waivers - Added reference IRM 2.5.14.3, System Development Quality Assurance - Waiver
Justification Procedure

(21) 2.5.3.6(1), General Programming - Changed sentence according to IRS Writing Style guide

MANUAL
TRANSMITTAL 2.5.3

Department of the Treasury

Internal Revenue Service
JULY 10, 2020

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3

(22) 2.5.3.6, Basic Principles - Added (5) Always code static database software DB2 cursors in the
working storage section of your program, Do not code them in procedure division of the program.

(23) 2.5.3.6, Basic Principles Added (6) For Customer Information Control System (CICS) use XCTL
(transfer control) instead of LINK to switch between programs, if you need to return to the calling
program otherwise; use LINK.

(24) 2.5.3.6.4.1 (1), Documenting Code - Removed repeated sentences

(25) 2.5.4.6.4.5, Corrected grammar for last three bullets

(26) 2.5.3.6.7.1.2 (7), Defining Data Standards - Removed paragraph 7

(27) 2.5.3.6.7.2, Tape Interface - Modified grammar for third bullet

(28) 2.5.3.7.3, Changed title from Structured Programming to COBOL Structured Programming

(29) 2.5.3.7.3, COBOL Structured Programming - Converted table to meet 508 compliance guidelines

(30) 2.5.3.7.4, Added COBOL Compile Run-Time Warning Messages

(31) 2.5.3.7, Changed title from General Programming to COBOL Programming Standards

(32) 2.5.3.7.4(3) a), Added Identification Division
1. Program Name
2. Author Name
3. Installation
4. Date Written
5. Date Completed
6. Security Information

(33) 2.5.3.7.3, Modified paragraphs 2 and 8, and removed 5

(34) 2.5.3.7.3, Structured Programming - Removed paragraphs 5 - 9

(35) 2.5.3.7.4(3)(b), COBOL Programming Standards - Added Environment Division and sub-list :
1. Configuration Section: a Source Computer, b. Object Computer
2. Input/Output section: a) File-Control, b) I/O Control

(36) 2.5.3.7.4 (3) (c), COBOL Programming Standards - Added Data Division

(37) 2.5.3.7.4 (3) (d), COBOL Programming Standards, Procedure Division modified 14- 11

(38) 2.5.3.8, Added Assemble Programming Language

(39) 2.5.3.8.1, Added ALC overview

(40) 2.5.3.8.2, Added ALC Basic Principles

(41) 2.5.3.8.3, Added ALC Program Comments and Documentation

(42) 2.5.3.8.4, Added IRS Assembler Language Coding Conventions

(43) 2.5.3.8.4.1, Added ALC Defining Constants and Storage

(44) 2.5.3.8.5, Added IRS Standard Assembler Macros

(45) 2.5.3.9.2.1, C++ - Converted table to meet 508 compliance guidelines

Manual Transmittal Cont. (1)

2.5.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(46) 2.5.3.9.6, C++ File Prologs -converted table to meet 508 compliance guidelines

(47) 2.5.3.6.9.7, Converted table header to meet 508 compliance guidelines

(48) 2.5.3.10.5, Added IRS Standard Assembler Macros

(49) 2.5.3.9, Combined all Java Programming content into one section

(50) 2.5.3.9.1, Java Programming Overview

(51) 2.5.3.9.2, Added Java Programming Programs

(52) 2.5.3.9.2.1, Added Java Programming Source File Structure

(53) 2.5.3.9.2.1.1, Added Java Programming Beginning Comments

(54) 2.5.3.9.2.1.2, Added Java Programming Package and Import Statements

(55) 2.5.3.9.2.2, Added Java Programming Naming Conventions

(56) 2.5.3.9.2.2.1, Added Java Programming Capitalization Conventions

(57) 2.5.3.9.2.2.2,. Added Java Programming Type Member Names

(58) 2.5.3.9.3, Added Java Programming Layout Conventions

(59) 2.5.3.9.3.1, Added Java Programming Wrapping Lines

(60) 2.5.3.9.4, Added Java Programming Commenting Conventions

(61) 2.5.3.9.4.1, Added Java Programming Single Line Comments

(62) 2.5.3.9.4.2, Added Java Programming Block Comments

(63) 2.5.3.9.5, Added Java Programming Class Design

(64) 2.5.3.9.5.1, Added Java Programming Packages

(65) 2.5.3.9.5.2, Added Java Programming Interfaces

(66) 2.5.3.9.5.3, Added Java Programming Classes

(67) 2.5.3.9.5.3.1, Added Java Programming Abstract Classes

(68) 2.5.3.9.5.3.2, Added Java Programming Sealed Classes

(69) 2.5.3.9.5.3.3, Added Java Programming Inner Classes

(70) 2.5.3.9.5.3.4, Added Java Programming Immutable Classes

(71) 2.5.3.9.5.3.5, Added Java Programming Objects

(72) 2.5.3.9.5.3.6, Added Java Programming Class Access Modifiers

(73) 2.5.3.9.5.3.7, Added Java Programming Fields

(74) 2.5.3.9.5.3.8, Added Java Programming Types

(75) 2.5.3.9.5.3.8.1, Added Java Programming Autoboxing and Unboxing Types

(76) 2.5.3.9.5.3.8.2, Added Java Programming Enumeration Types

Manual Transmittal Cont. (2)

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3

(77) 2.5.3.9.4, Added Java Programming Commenting Conventions

(78) 2.5.3.9.4.1, Added Java Programming Single Line Comments

(79) 2.5.3.9.4.2, Added Java Programming Block Comments

(80) 2.5.3.9.5, Added Java Programming Class Design

(81) 2.5.3.9.5.1, Added Java Programming Packages

(82) 2.5.3.9.5.2, Added Java Programming Interfaces

(83) 2.5.3.9.5.3, Added Java Programming Classes

(84) 2.5.3.9.5.3,1, Added Java Programming Abstract Classes

(85) 2.5.3.9.5.3.2, Added Java Programming Sealed Classes

(86) 2.5.3.9.5.3.3, Added Java Programming Inner Classes

(87) 2.5.3.9.5.3.4, Added Java Programming Immutable Classes

(88) 2.5.3.9.5.3.5, Added Java Programming Objects

(89) 2.5.3.9.5.3.6, Added Java Programming Class Access Modifiers

(90) 2.5.3.9.5.3.7, Added Java Programming Fields

(91) 2.5.3.9.5.3.8, Added Java Programming Types

(92) 2.5.3.9.5.3.8.1, Added Java Programming Autoboxing and Unboxing Types

(93) 2.5.3.9.5.3.8.2, Added Java Programming Enurmerations Types

(94) 2.5.3.9.5.3.8.3, Added Java Programming Nullable Types

(95) 2.5.3.9.5.3.8.4, Added Java Programming Nested Classes

(96) 2.5.3.9.5.3.8.5, Added Java Programming Numeric Types

(97) 2.5.3.9.5.3.8.6, Added Java Programming, Generics

(98) 2.5.3.9.6, Added Java Programming Statements

(99) 2.5.3.9.6.1, Added Java Programming Variable Declaration

(100) 2.5.3.9.6.2, Added Java Programming Expressions

(101) 2.5.3.9.6.3, Added Java Programming Conditional Statements

(102) 2.5.3.9.6.4, Added Java Programming Iteration Statement

(103) 2.5.3.9.6.5, Added Java Programming Empty Statement

(104) 2.5.3.9.6.6, Added Java Programming Assertion Statement

(105) 2.5.3.9.7, Added Java Programming Expression

(106) 2.5.3.9.7.1, Lambda Expression

(107) 2.5.3.9.8, Added Java Programming Operators

Manual Transmittal Cont. (3)

2.5.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(108) 2.5.3.9.9, Added Java Programming Member Design

(109) 2.5.3.9.9.1, Added Java Programming Member Overloading

(110) 2.5.3.9.9.2, Added Java Programming Constructor Design

(111) 2.5.3.9.9.3, Added Java Programming Finalizer Design

(112) 2.5.3.9.9.4, Added Java Programming Field Design

(113) 2.5.3.9.9.5, Added Java Programming Property Design

(114) 2.5.3.9.9.5.1, Added Java Programming Abstract Properties

(115) 2.5.3.9.9.5.2, Added Java Programming Constants

(116) 2.5.3.9.9.6, Added Java Programming Parameter Design

(117) 2.5.3.9.9.6.1, Added Java Programming Variable Length Parameter

(118) 2.5.3.9.9.6.2, Added Java Programming Event Design

(119) 2.5.3.9.9.7, Added Java Programming Methods

(120) 2.5.3.9.9.8, Added Java Programming Language Guidelines

(121) 2.5.3.9.9.8.1, Added Java Programming Arrays

(122) 2.5.3.9.9.9, Added Java Programming Exceptions

(123) 2.5.3.9.9.9.1, Added Java Programming Catching and Handling Exceptions

(124) 2.5.3.9.9.9.2, Added Java Programming Throwing Exceptions

(125) 2.5.3.9.9.9.3, Added Java Programming Unchecked Exceptions Best Practices

(126) 2.5.3.9.9.10, Added Java Programming Concurrency

(127) 2.5.3.9.9.10.1, Added Java Programming Threads

(128) 2.5.3.9.9.10.2, Added Java Programming High-Level Concurrency

(129) 2.5.3.9.9.11, Added Java Programming Native Code Interoperability

(130) 2.5.3.9.9.12, Added Java Programming Design for Extensibility

(131) 2.5.3.9.9.12.1, Added Java Programming Unsealed Classes

(132) 2.5.3.9.9.12.2, Added Java Programming Protected Members

(133) 2.5.3.9.9.12.3, Added Java Programming Events and Callbacks

(134) 2.5.3.9.9.12.4, Added Java Programming Virtual Members

(135) 2.5.3.9.9.12.5, Added Java Programming Abstractions

(136) 2.5.3.9.9.12.6, Added Java Programming Base Classes for Implementing Abstractions

(137) 2.5.3.9.9.12.7, Added Java Programming Sealing

(138) 2.5.3.9.9.13, Added Java Programming Secure Coding Guidelines

Manual Transmittal Cont. (4)

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3

(139) 2.5.3.9.9.13.1, Added Java Programming Fundamentals

(140) 2.5.3.9.9.13.2, Added Java Programming Denial of Service

(141) 2.5.3.9.9.13.3, Added Java Programming Confidential Information

(142) 2.5.3.9.9.13.4, Added Java Programming Input Validation and Data Sanitization

(143) 2.5.3.9.9.13.5, Added Java Programming Injection and Inclusion

(144) 2.5.3.9.9.13.6, Added Java Programming Accessibility and Extensibility

(145) 2.5.3.9.9.13.7, Added Java Programming Serialization and Deserialization

(146) 2.5.3.9.9.13.8, Added Java Programming Access Control

(147) 2.5.3.9.9.13.9, Added Java Programming Defensive User of the Java Native Interface (JNI)

(148) 2.5.3.10, Introduction Added line (g) Assembler Language Coding (ALC)

(149) 2.5.3.13.6.3 (1), Conventional Constants - Added missing attribute to table

(150) Changed shall to must for requirements throughout this IRM

(151) All Tables throughout IRM , Included a Title Heading

(152) Exhibit 2.5.3.-1, Added Java Programming Example of Wrapping Lines

(153) Exhibit 2.5.3-2, Added Java Programming Example of Objects

(154) Exhibit 2.5.3-3, Added Java Programming Example Object Test Results

(155) Exhibit 2.5.3-4, Added Java Programming Example of “instanceof”

(156) Exhibit 2.5.3-5, Added Java Programming Example of Subclasses

(157) Exhibit 2.5.3-6, Added Java Programming Example of Enumeration Type

(158) Exhibit 2.5.3-7, Added Java Programming Nested Classes

(159) Exhibit 2.5.3-8, Added Java Programming Switch Example

(160) Exhibit 2.5.3-9, Added Java Programming Design Example

(161) Exhibit 2.5.3-10, Added Java Programming Constructor Example

(162) Exhibit 2.5.3.9, Added Java Programming Abstract Example

(163) Exhibit 2.5.3-12, Added Java Programming Event Design

(164) Exhibit 2.5.3-13, Added Java Programming Thread Example

(165) Exhibit 2.5.3-14, Added Java Programming Examples of Single Words used for Capitalization
Purposes

(166) Exhibit 2.5.3-15, Added COBOL Examples

(167) Exhibit 2.5.3.15, Added C Language Source Code Template

(168) Exhibit 2.5.3-16, Added C Language Header File Template

Manual Transmittal Cont. (5)

2.5.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(169) Exhibit 2.5.3-17, Added Acronyms and Terms

(170) Exhibit 2.5.3-18, Added Terms and Descriptions

(171) Exhibit 2.5.3-19, Assembler Language Code (ALC) Standards and References

(172) References, Added IBM High Level Assembler for z/OS Language Reference V1R6

(173) References, Added IBM Assembler System Standards, Chapter 1- 8 (IRS-defined)

(174) References, Added Java Assembly Package title and hyperlink

(175) References, Added Java Programming Package and Import Statements title and hyperlink

(176) References, Added Java Programming Input Validation and Data Sanitation title and hyperlink

(177) References, Added Catching and Handling Exceptions

(178) Testing and Debugging (1), Removed obsolete IRM 2.5.2 and replaced with IRM 2.127.2 ,
Information Technology Testing Process and Procedures

(179) References, Added Government Accountability Office (GAO) report, June 2018, GAO-18-298
Investments’ Performance and Risks

(180) References, Added IRM 10.8.1 Information Technology (IT) Security, Policy Guidance

(181) References, Added IRM 10.8.6 Information Technology (IT) Security, Application Security and
Development

(182) 2.5.3.9.3.1 (3), General Programming - Changed line Begin to insert comment lines in these specified
areas to Begin to insert comment lines, statements, and code in these areas

(183) 2.5.3.9.3.1 (3), General Programming - Reorganize section (a -e) to the following:

a. a. IDENTIFICATION DIVISION - Added new sub-bullet list
b. b. DATA DIVISION: - Moved to line c, and replaced with ENVIRONMENT DIVISION with

subsection Configuration Section
c. c. WORKING STORAGE SECTION - Replaced with. DATA DIVISION, and moved WORKING-

STORAGE SECTION under as a bullet
d. d. LINKAGE SECTION - Moved under c. DATA DIVISION
e. e. PROCEDURE DIVISION - Moved to line d.
f. Removed line f.- Any section within the PROCEDURE DIVISION -
g. Removed line g. - Any paragraph /section that represents a Structure Chart module with the

PROCEDURE DIVISION

EFFECT ON OTHER DOCUMENTS

IRM 2.5.3, dated 3-1-2007, is superseded.

Manual Transmittal Cont. (6)

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3

AUDIENCE

The audience intended for this transmittal is personnel responsible for engineering, developing, or
maintaining Agency software systems identified in the Enterprise Architecture. This engineering, development,
and maintenance includes work performed by IRS management, Information Technology government employees
and contractors.

Nancy Sieger

Acting Chief Information Officer

Manual Transmittal Cont. (7)

2.5.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Manual Transmittal2.5.3

Programming and Source Code Standards

Table of Contents Table of Contents

2.5.3.1 Program Scope and Objectives

2.5.3.1.1 Background

2.5.3.1.2 Authority

2.5.3.1.3 Roles and Responsibilities

2.5.3.1.4 Program Management and Review

2.5.3.1.5 Program Controls

2.5.3.1.6 Acronyms and Terms

2.5.3.1.7 Related Resources

2.5.3.2 Federal Government Application Standards Guidance

2.5.3.2.1 Application Security Control Frameworks

2.5.3.2.1.1 Application Security Controls

2.5.3.2.2 AD Waivers

2.5.3.3 General Programming

2.5.3.3.1 Goals

2.5.3.3.2 Basic Principles

2.5.3.3.3 Design Specifications

2.5.3.3.4 Documenting, Testing, and Debugging Source Code

2.5.3.3.4.1 Documenting Code

2.5.3.3.4.2 Testing and Debugging Code

2.5.3.3.5 Selecting Programming Languages

2.5.3.3.6 Data Controls

2.5.3.3.6.1 Basic Principles of Data Controls

2.5.3.3.6.2 Programming Considerations for Data Controls

2.5.3.3.6.3 Internal Controls

2.5.3.3.6.3.1 Input Controls

2.5.3.3.6.3.2 Processing Controls

2.5.3.3.6.3.3 Output Controls

2.5.3.3.6.4 External Data Controls

2.5.3.3.6.4.1 Control Totals

2.5.3.3.6.4.2 Intra-Run Controls

2.5.3.3.6.5 Including Data Controls

2.5.3.3.7 File Design and Cartridge Interface Formats

2.5.3.3.7.1 File Design Formats

2.5.3.3.7.1.1 Record Format Design

2.5.3.3.7.1.2 Defining Data Fields

Part 2
Chapter 5 Systems Development

IRM 2.5.3

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3

2.5.3.3.7.1.3 File Design

2.5.3.3.7.2 Tape Interface

2.5.3.3.8 Date Fields

2.5.3.3.8.1 Year

2.5.3.3.8.2 Date

2.5.3.3.8.3 Gregorian Dates

2.5.3.3.8.4 Exceptions

2.5.3.4 COBOL Programming

2.5.3.4.1 COBOL Overview

2.5.3.4.2 COBOL Basic Principles

2.5.3.4.3 COBOL Structured Programming

2.5.3.4.3.1 COBOL Programming Standards

2.5.3.4.3.2 COBOL Identification Division

2.5.3.4.3.3 COBOL Environment Division

2.5.3.4.3.4 COBOL Data Division

2.5.3.4.3.5 COBOL Procedure Division

2.5.3.4.4 COBOL Compile Run-Time Warning Messages

2.5.3.5 C Programming

2.5.3.5.1 C File Naming

2.5.3.5.2 C Source Code Files

2.5.3.5.2.1 C Prologue

2.5.3.5.2.2 C Includes

2.5.3.5.2.2.1 C Header File Organization

2.5.3.5.2.2.2 C Header File Inclusion in the File that defines the Function

2.5.3.5.2.2.3 C Nested Header Files

2.5.3.5.2.2.4 C Header File Names

2.5.3.5.2.3 C Defines and Typedefs

2.5.3.5.2.4 C Global Definitions

2.5.3.5.2.5 C Function Placement

2.5.3.5.3 C Other Files

2.5.3.5.4 C Global Variable Declarations

2.5.3.5.4.1 C Global Variables

2.5.3.5.4.2 C Structure Declaration

2.5.3.5.4.3 C Typedef Declaration

2.5.3.5.5 C Local Variable Declarations

2.5.3.5.5.1 C Local Variable Names

2.5.3.5.5.2 C Typedef Declaration

2.5.3.5.5.3 C Abbreviations for Common Variable

2.5.3.5.6 C Constants

Part 2
Chapter 5 Systems Development

IRM 2.5.3

2.5.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.5.6.1 C Defining Constants

2.5.3.5.6.2 C Consistency of Constant Definitions

2.5.3.5.6.3 C Conventional Constants

2.5.3.5.6.4 C Enumeration Data

2.5.3.5.6.5 C Symbolic Constants - #define

2.5.3.5.7 C Functions

2.5.3.5.7.1 C Return Values

2.5.3.5.7.2 C Parameter Lists

2.5.3.5.7.3 C Function Body

2.5.3.5.7.4 C Function Prototype

2.5.3.5.7.5 C Function Naming

2.5.3.5.8 C Comments

2.5.3.5.8.1 C Template for File and Header

2.5.3.5.8.2 Function Comments

2.5.3.5.9 C Statements

2.5.3.5.9.1 C Statements per Line

2.5.3.5.9.2 C Single Statement Blocks

2.5.3.5.9.3 C Multiple Statement Blocks

2.5.3.5.9.4 C Levels of Control Structure Nesting

2.5.3.5.9.5 C Goto Statement

2.5.3.5.9.6 C Break Statement

2.5.3.5.9.7 C Null Statement

2.5.3.5.9.8 Conditional Statement

2.5.3.5.9.9 C Exit Statement

2.5.3.5.9.10 C Default Truth Value

2.5.3.5.9.11 C - Added Statements for Debugging

2.5.3.5.10 Operators

2.5.3.5.11 ESQL/C

2.5.3.5.11.1 ESQL/C Database Error Checks

2.5.3.5.11.2 ESQL/C Operations

2.5.3.5.11.3 ESQL/C Performance

2.5.3.5.11.4 SQL Statements

2.5.3.5.12 Whitespace

2.5.3.5.12.1 Vertical Spacing of Conditional Operators on Separate Lines

2.5.3.5.12.2 C Spacing for Parentheses

2.5.3.5.13 C Portability

2.5.3.5.13.1 C Machine-Dependent Code Placement

2.5.3.5.13.2 C Machine-Dependent Code Usage

2.5.3.6 C++ Programming Overview

Part 2
Chapter 5 Systems Development

IRM 2.5.3

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3

2.5.3.6.1 C++ Scope

2.5.3.6.2 C++ Classes

2.5.3.6.2.1 C++ Class Declaration

2.5.3.6.2.2 C++ Constructors and Destructors

2.5.3.6.2.3 C++ Class Data Initialization

2.5.3.6.2.4 C++ Class Execution

2.5.3.6.2.5 C++ Inheritance

2.5.3.6.2.6 C++ Initialization

2.5.3.6.2.6.1 C++ Initialization of Variables

2.5.3.6.2.6.2 C++ Initialization of Classes

2.5.3.6.3 Variables Scope

2.5.3.6.4 Data Types

2.5.3.6.5 Conditional Constructs

2.5.3.6.6 File Prologs

2.5.3.6.6.1 File Size and Structure

2.5.3.6.6.1.1 File Size

2.5.3.6.6.1.2 File Structure

2.5.3.6.6.2 C++ Name Conventions

2.5.3.6.6.2.1 C++ General Naming Conventions

2.5.3.6.6.2.1.1 C++ Identifiers

2.5.3.6.6.2.1.2 C++ Functions and Parameter

2.5.3.6.6.2.1.3 C++ Constants

2.5.3.6.7 C++ Formatting

2.5.3.6.7.1 C++ Indentation

2.5.3.6.7.2 C++ Spacing

2.5.3.6.7.3 Grouping

2.5.3.6.7.4 Includes

2.5.3.6.8 Functions

2.5.3.6.8.1 Declarations

2.5.3.6.8.2 Function Parameters

2.5.3.6.8.3 Function Invocation, Execution, and Return

2.5.3.6.9 Error Handling

2.5.3.6.9.1 General Error Handling

2.5.3.6.9.2 Throwing Exceptions

2.5.3.6.9.3 Handling Exceptions

2.5.3.6.10 Expressions

2.5.3.6.10.1 Expression Arithmetic

2.5.3.6.10.2 Type Conversions

2.5.3.6.10.3 Pointers in Expressions

Part 2
Chapter 5 Systems Development

IRM 2.5.3

2.5.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.6.11 Comments

2.5.3.6.12 Memory Management

2.5.3.6.12.1 Heap and Stack Memories

2.5.3.6.12.2 Memory Leaks

2.5.3.6.12.3 Buffers Overflows

2.5.3.7 Assembler Language Code (ALC) Programming

2.5.3.7.1 Assembler Language Code (ALC) Overview

2.5.3.7.2 Assembler Language Code (ALC) Basic Principles

2.5.3.7.3 Assembler Language Code (ALC) Program Comments and Documentation

2.5.3.7.4 Assembler Language Coding Conventions (ALC)

2.5.3.7.4.1 Assembler Language Code (ALC) Defining Constants and Storage

2.5.3.7.5 Assembler Language Code (ALC) Standard Macros

2.5.3.8 Java Programming Language

2.5.3.8.1 Java Programming Overview

2.5.3.8.2 Program Objectives

2.5.3.8.2.1 Source File Structure

2.5.3.8.2.1.1 Beginning Comments

2.5.3.8.2.1.2 Package and Import Statements

2.5.3.8.2.2 Naming Conventions

2.5.3.8.2.2.1 Capitalization Conventions

2.5.3.8.2.2.2 Type Member Names

2.5.3.8.2.2.3 General Names

2.5.3.8.2.2.4 Assembly Names

2.5.3.8.2.2.5 Package Names

2.5.3.8.2.2.6 Resource Names

2.5.3.8.3 Layout Conventions

2.5.3.8.3.1 Java Programming Example - Wrapping Lines

2.5.3.8.4 Java Programming Commenting Conventions

2.5.3.8.4.1 Java Programming Single Line Comments

2.5.3.8.4.2 Java Programming Block Comments

2.5.3.8.5 Class Design

2.5.3.8.5.1 Packages

2.5.3.8.5.2 Interfaces

2.5.3.8.5.3 Classes

2.5.3.8.5.3.1 Abstract Classes

2.5.3.8.5.3.2 Sealed Classes

2.5.3.8.5.3.3 Static Classes

2.5.3.8.5.3.4 Inner Classes

2.5.3.8.5.3.5 Immutable Classes

Part 2
Chapter 5 Systems Development

IRM 2.5.3

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3

2.5.3.8.5.3.6 Objects

2.5.3.8.5.3.7 Class Access Modifiers

2.5.3.8.5.3.8 Fields

2.5.3.8.5.3.9 Types

2.5.3.8.5.3.9.1 Autoboxing and Unboxing Types

2.5.3.8.5.3.9.2 Enumeration Types

2.5.3.8.5.3.9.3 Nullable Types

2.5.3.8.5.3.9.4 Nested Classes

2.5.3.8.5.3.9.5 Numeric Types

2.5.3.8.5.3.9.6 Generics

2.5.3.8.6 Statements

2.5.3.8.6.1 Variable Declaration

2.5.3.8.6.2 Expressions

2.5.3.8.6.3 Conditional Statements

2.5.3.8.6.4 Iteration Statement

2.5.3.8.6.5 Empty Statement

2.5.3.8.6.6 Assertion Statement

2.5.3.8.7 Expressions

2.5.3.8.7.1 Lambda Expressions

2.5.3.8.8 Operators

2.5.3.8.9 Member Design

2.5.3.8.9.1 Member Overloading

2.5.3.8.9.2 Constructor Design

2.5.3.8.9.3 Finalizer Design

2.5.3.8.9.4 Field Design

2.5.3.8.9.5 Property Design

2.5.3.8.9.5.1 Abstract Properties

2.5.3.8.9.5.2 Constants

2.5.3.8.9.6 Parameter Design

2.5.3.8.9.6.1 Variable Length Parameter

2.5.3.8.9.6.2 Event Design

2.5.3.8.9.7 Methods

2.5.3.8.9.8 Language Guidelines

2.5.3.8.9.8.1 Arrays

2.5.3.8.9.9 Exceptions

2.5.3.8.9.9.1 Catching and Handling Exceptions

2.5.3.8.9.9.2 Throwing Exceptions

2.5.3.8.9.9.3 Unchecked Exception Best Practices

2.5.3.8.9.10 Concurrency

Part 2
Chapter 5 Systems Development

IRM 2.5.3

2.5.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.8.9.10.1 Threads

2.5.3.8.9.10.2 High-Level Concurrency

2.5.3.8.9.11 Native Code Interoperability

2.5.3.8.9.12 Design for Extensibility

2.5.3.8.9.12.1 Unsealed Classes

2.5.3.8.9.12.2 Protected Members

2.5.3.8.9.12.3 Events and Callbacks

2.5.3.8.9.12.4 Virtual Members

2.5.3.8.9.12.5 Abstractions

2.5.3.8.9.12.6 Base Classes for Implementing Abstractions

2.5.3.8.9.12.7 Sealing

2.5.3.8.9.13 Secure Coding Guidelines

2.5.3.8.9.13.1 Fundamentals

2.5.3.8.9.13.2 Denial of Service

2.5.3.8.9.13.3 Confidential Information

2.5.3.8.9.13.4 Input Validation and Data Sanitization

2.5.3.8.9.13.5 Injection and Inclusion

2.5.3.8.9.13.6 Accessibility and Extensibility

2.5.3.8.9.13.7 Serialization and Deserialization

2.5.3.8.9.13.8 Access Control

2.5.3.8.9.13.9 Defensive Use of the Java Native Interface (JNI)

Exhibits

2.5.3-1 Java Programming- Example of Wrapping Lines

2.5.3-2 Java Programming Example of Objects

2.5.3-3 Java Programming - Object Test Results

2.5.3-4 Java Programming Example of “instanceof”

2.5.3-5 Java Programming Example -Subclass

2.5.3-6 Java Programming Example - Enumeration Type

2.5.3-7 Java Programming Example - Nested Classes

2.5.3-8 Java Programming Class Switch Example

2.5.3-9 Java Programming Design Example

2.5.3-10 Java Programming Constructor Example

2.5.3-11 Java Programming Abstract Properties

2.5.3-12 Java Programming Example of Event Design

2.5.3-13 Java Programming Thread example

2.5.3-14 Java Programming Examples of Single Words used for Capitalization Purposes

2.5.3-15 C Programming Source Code Template

2.5.3-16 C Language Header File Template

Part 2
Chapter 5 Systems Development

IRM 2.5.3

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3

2.5.3-17 Acronyms and Terms

2.5.3-18 Terms and Definitions

2.5.3-19 Language Code (ALC) Standards and References

Part 2
Chapter 5 Systems Development

IRM 2.5.3

2.5.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.1
(07-10-2020)
Program Scope and
Objectives

(1) Purpose: This Internal Revenue Manual (IRM) establishes standards and
guidelines to promote the development of maintainable, portable, reliable
software applications in all Service used and approved programming
languages as outlined in this IRM.

(2) Audience: This guidance applies to all IRS Senior Leadership, Information
technology (IT) managers at all levels. Also included are personnel responsible
for: engineering, developing, or maintaining Agency software systems identified
in the Enterprise Architecture. This engineering, development, and mainte-
nance include services performed by both government employees and
contracts.

(3) Policy Owner: The current policy owner is the Associate Chief Information
Officer (ACIO), Application Development.

(4) Program Owner: The current program owner is the Director, Technical Integra-
tion Organization (TIO).

(5) Primary stakeholders:

a. Application Development (AD) - AD staff, management, and contractual
employees

b. Developers - government and contractual employees
c. Engineers - government and contractual employees
d. IRS IT managers
e. Quality Assurance (QA) - IRS QA staff, managers, and contractual

employees

2.5.3.1.1
(07-10-2020)
Background

(1) In response to Government Accountability Office (GAO-18-298) Information
Technology (IT): IRS Needs to Address Significant Risks to Tax
Processing- Investments Performance and Risks, June 2018 report
provided to Congressional Committees. IRS IT recognized the importance of
continuously improving the performance of IRS Major IT Investments. IT IRS
organizations’ Mainframe systems, using legacy programming languages:
Common Business Oriented Language (COBOL), Assembler Language Code
(ALC), Java programming; etc., IRS Application Development (AD) has estab-
lished Risk Management strategies and guidance to identify, analyze, mitigate,
and monitor risks and issues for system development standards

2.5.3.1.2
(07-10-2020)
Authority

(1) IRM 2.5.1 System Development, establishes the System Development program
for the IRS

(2) This IRM 2.5.3 is consistent with the President’s Executive Order 13800,
Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure

(3) Government Accountability Office, (GAO)

(4) Treasury Inspector General Tax Administration (TIGTA)

(5) Presidential American Technology Council, 2017

(6) Administrator of the General Services Administration (GSA)

(7) Federal Information Security Modernization Act (FISMA) of 2014

(8) Director of Office of Management and Budget (OMB)

Programming and Source Code Standards 2.5.3 page 1

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.1.2

(9) Secretary of the Department of Homeland Security (DHS)

(10) Secretary of Commerce for modernization of Federal IT

(11) Federal Information Processing Standards (FIPS) Pub 73, Guidelines for
Security of Computer Applications

(12) 21st Century Integrated Digital Experience Act (IDEA), December 2018

2.5.3.1.3
(07-10-2020)
Roles and
Responsibilities

(1) Information Technology (IT), Cybersecurity: Cybersecurity manages the IRS
IT Security program in accordance with the Federal Information Security Man-
agement Act with the goal of delivering effective and professional customer
service to business units and support functions within the IRS. These proce-
dures are done as the following:

a. Provide valid risk mitigated solutions to security inquisitions.
b. Respond to incidents quickly, and effectively in order to eliminate risks/

threats.
c. Ensure all IT security policies and procedures are actively developed,

and updated.
d. Provide security advice to IRS constituents, and proactively monitor IRS

robust security program for any required modifications or enhancements.

(2) Application Development’s chain of command and responsibilities include:

a. Commissioner: Oversees and provides overall strategic direction for the
IRS. The Commissioner’s and Deputy Commissioner’s main focus is for
the IRS’s services programs, enforcement, operations support, and orga-
nizations. Additionally, the Commissioner’s vision is to enhance services
for the nation’s taxpayers, balancing appropriate enforcement of the
nation’s tax laws while respecting taxpayers’ rights.

b. Deputy Commissioner, Operation Support (DCOS): Oversees the op-
erations of Agency-Wide Shared Services: Chief Financial Officer, Human
Capital Office, Information Technology, Planning Programming and Audit
Oversight and Privacy, and Governmental Liaison and Disclosure.

c. Chief Information Officer (CIO): The CIO leads Information Technology,
and advises the Commissioner on Information Technology matters,
manages all IRS IT resources, and is responsible for delivering and main-
taining modernized information systems throughout the IRS. Assisting the
Chief Technology Officer (CTO) is the Deputy Chief Information Officer for
Operations.

d. Application Development (AD), Associate Chief Information Officer
(ACIO): The AD ACIO reports directly to the CIO; oversees and ensures
the quality of: building, unit testing, delivering, and maintaining integrated
enterprise-wide applications systems to support modernized and legacy
systems in the production environment to achieve the mission of the
service.

e. Deputy AD Associate CIO (ACIO): The Deputy AD ACIO reports directly
to the AD ACIO, and is responsible for:
• Leading all strategic priorities to enable the AD Vision, IT Technology
Roadmap and the IRS future state
• Executive planning, and management of the development organization
which ensures all filing season programs are developed, tested, and
delivered on-time and within budget

page 2 2.5 Systems Development

2.5.3.1.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(3) Application Development: Responsible for building, testing, delivering, and
maintaining integrated information applications systems, e.g. software
solutions, to support modernized systems and production environment to
achieve the mission and objectives of the service. Additionally, AD does the
following:

a. Work in partnership with customers to improve the quality of the IRS in-
formation systems, products and services.

b. Maintains the effectiveness and enhance the integration of IRS installed
base production systems and infrastructure while modernizing core
business systems and infrastructure.

c. Establishes and maintains rigorous contract and fiscal management,
oversight, quality assurance, and program risk management processes to
ensure that strategic plans and priorities are being met.

d. Provides quality assessment/assurance of deliverables and processes.
e. Creates oversight support of enterprise modernization goals in coordina-

tion with Information Technology HR initiatives and policy.
f. Responsible for delivering filing season projects, and implementing

Economic Stimulus changes.
g. AD has the following Domains:

• Compliance
• Corporate Data (CD)
• Customer Service (CS)
• Data Delivery Service (DDS)
• Delivery Management; Quality Assurance (DMQA)
• Identity & Access Management (IAM)
• Internal Management (IA)
• Submission Processing (SP)
• Technical Integration Organization (TIO)

(4) Director, Compliance: Provides executive direction for a wide suite of Compli-
ance domain focused applications and oversee the IT Software Development
organization to ensure the quality of production ready applications.

a. Directs and oversees an unified cross-divisional approach to compliance
strategies needing collaboration pertaining for the following:

• Abusive tax avoidance transactions needing a coordinated response
• Cross-divisional technical issues
• Emerging issues
• Service-wide operational procedures

(5) Director, AD Corporate Data: Directs and oversees the provisioning of au-
thoritative databases, refund identification, notice generation, and reporting.

(6) Director, Customer Service: Directs and oversees Customer Service Support
for the IT Enterprise Service Desk ensuring quality customer to employee rela-
tionship.

(7) Director, Data Delivery Services: Oversees and ensures the quality of data
with repeatable processes in a scalable environment. The Enterprise Data
Strategy is to transform DDS into a data centric organization dedicated to
deliver Data as a Service (DaaS) through:

• Innovation - new methods, discoveries
• Renovation - streamline or automate
• Motivate - incent and enable individuals

Programming and Source Code Standards 2.5.3 page 3

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.1.3

(8) Director, Delivery Management & Quality Assurance (DMQA):

• Executes the mission of DMQA by ensuring AD has a coordinated,
cross-domain, and cross-organizational approach to delivering AD
systems and software applications

• Reports to the AD ACIO, and chairs the AD Risk Review Board.
• Chairperson, Configuration Control Board, see IRM 2.5.1.2.2.2
• Government Sponsor, Configuration Control Board, see IRM 2.5.1.2.2.2

(9) Director, Identity & Access Management (IAM) Organization: Provides
oversight and direction for continual secure online interaction by verification
and establishing an individual’s identity before providing access to taxpayer
information “identity proofing” while staying compliant within federal security
requirements.

(10) Director, Internal Management: Provides oversight for the builds, tests, deliv-
eries, refund identification, notice generation, and reporting.

(11) Director, Submission Processing: Provides oversight to an organization of
over 17000 employees, comprised of: a headquarters staff responsible for de-
veloping program policies and procedures, five W&I processing centers, and
seven commercially operated lockbox banks. Responsible for the processing of
more than 202 million individual and business tax returns.

(12) Director, Technical Integration Office: Provides strategic technical organiza-
tion oversight ensuring applicable guidance, collaboration, and consolidation of
technical integration issues and quality assurance for the Applications Develop-
ment portfolio.

2.5.3.1.4
(07-10-2020)
Program Management
and Review

(1) The Enterprise Program Management Office (EPMO) is responsible for the
delivery of integrated solutions for several of the IRS’s large scaled programs.
EPMO plays a key role in establishing change, configuration, release plans;
and implementing new information system functional capabilities.

(2) The EPMO is the primary partner with the business for programs under their
purview, and collaborates with IT delivery partners (AD, ES, EOPS, and the
other ACIO areas) to deliver required capabilities. This structure positions each
organization to maintain a strong core function to optimize their operations.

2.5.3.1.5
(07-10-2020)
Program Controls

(1) The Enterprise Program Controls (EPC) Office is the lead for EPMO Informa-
tion Technology enterprise-wide program management functions, and assist
with the Applications Development (AD) organization in cross domain support
for a variety of program management disciplines. The EPC office is comprised
of seven sections: Business Operations, Program Support Services, Invest-
ment & Contract Management, Program Oversight & Reporting,
Communications & Organization Readiness, Enterprise Transition Management
Office, and Technical Integration.

(2) The controls established in this Internal Revenue Manual (IRM) apply to
Service personnel responsible for developing or maintaining the Service’s ap-
plication systems or software applications, identified in the IRS Enterprise
Architecture. Service personnel who contract for development or maintenance
of these systems/software applications must ensure contracts comply with
these controls.

page 4 2.5 Systems Development

2.5.3.1.4 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.1.6
(07-10-2020)
Acronyms and Terms

(1) See Exhibit 2.5.3-17 for Acronyms and Terms

(2) See Exhibit 2.5.3-18 for Terms and Descriptions

2.5.3.1.7
(07-10-2020)
Related Resources

(1) The following are supplement references on the development of maintainable,
portable, reliable, and secure software applications.

• The Elements of Programming Style, ISBN: 0070342075, Brian W.
Kernighan and P. J. Plauger

• IBM High Level Assembler for z/OS Language Reference V1R6
• IRM 2.5.12 - Design Techniques and Deliverables
• IRM 2.127.2 , Information Technology Testing Process and Procedures
• Assembler Language Programming, ISBN: 0–471–88657–2, Nancy

Stern, Alden Sager and Robert A. Stein
• Structured COBOL Programming, ISBN 0-471-29987-1, Nancy Stern

and Robert A Stern
• The Elements of C Programming Style, ISBN 0070512787, Jay Ranade

and Alan Nash
• IBM Assembler System Standards, Chapter 1- 8 (IRS-defined)
• IRS Document 12384, C++ Programming Standards
• Java Programming Language, Oracle Technology Network/Java
• Java Assembly Package, https://docs.oracle.com/javase/tutorial/

deployment/jar/index.html
• Java Programming Package and Import Statements, https//docs.oracle.

com/javase/tutorial/java/package/usepkgs.html
• Java Programming Input Validation and Data Sanitation http://docs.

oracle.com/javase/8/docs/api/java/lang/RuntimesException.html
• How to write documentation comments and available tags https://docs.

oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
• Java primitives - https://cs.fit.edu/~ryan/java/language/java-data.html and

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html.
• IRM 10.8.1 - Security, Privacy and Assurance, IT Security, Policy and

Guidance
• IRM 10.8.6 - Security, Privacy and Assurance, IT Security, Application

Security and Development
• The Open Web Application Security Project (OWASP) https://www.

owasp.org
• For additional Assembler Standards and References, see Exhibit 2.5.

3-19

2.5.3.2
(07-10-2020)
Federal Government
Application Standards
Guidance

(1) The Federal Information Security Modernization Act of 2014 (FISMA) was
passed for providing a framework with better information security controls over
information resources, supporting Federal Government operations and assets.
IRS applications must be compliant with federal standards, e.g. NIST SP
800.53A Revision 5 “Assessing Security and Privacy Controls in Federal Infor-
mation Systems and Organizations”; some key focus areas are:

• Insider threats
• Software application security (including web applications)
• Cross domain solutions
• Advanced persistent threats
• Industrial / process control systems
• Privacy

.

Programming and Source Code Standards 2.5.3 page 5

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.2

https://docs.oracle.com/javase/tutorial/deployment/jar/index.html
https://docs.oracle.com/javase/tutorial/deployment/jar/index.html
 https://docs.oracle.com/javase/tutorial/java/package/usepkgs.html
 https://docs.oracle.com/javase/tutorial/java/package/usepkgs.html
https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://www.owasp.org/
https://www.owasp.org/

(2) For information on IRS Information Technology Cybersecurity controls see IRM
10.8.1 Security, Privacy and Assurance, IT Security, Policy and Guidance and
IRM 10.8.6 - Security, Privacy and Assurance, IT Security, Application Security
and Development

2.5.3.2.1
(07-10-2020)
Application Security
Control Frameworks

(1) The Security Control Framework assist with the organization’s legal and regu-
latory security compliance efforts.

(2) Application security is the use of software, hardware, and procedural methods
to prevent security flaws in applications, and protect them from external
threats. Security is a critical objective during development as application
become more accessible over networks, are more vulnerable to vast variety of
threats. Hence, security measures must be built into application to mitigate un-
authorized code manipulation of applications to access, steal, modify, or delete
sensitive data. As IRS software developers create robust code for effective IRS
applications, to achieve secure software they must embrace and practice a
wide variety of secure coding techniques. All tiers of an application: user
interface, business logic, controller, database, etc. must be created with
security controls in mind. Hence, developers must ensure they follow best
practices and guidelines from these primary industries when applicable:

a. Common Weakness Enumeration (CWE) - Targeted toward developers
and security practitioners as a community initiative, and a formal list of
software weaknesses types is created and updated for::
• Providing a common baseline standard for: weakness, identification:,
mitigation, and prevention
• Assisting with describing software security weaknesses in architecture,
design, or code

b. For more information see, https://cwe.mitre.org/index.html

(3) OWASP Top 10 Proactive Controls 2018 : This is a list of security techniques
that must be included in every software development project when applicable.
The following control numbers are listed in order of importance, with control
number 1 as the most important:

a. Control 1 - Define Security Requirements
b. Control 2 - Leverage Security Frameworks and Libraries
c. Control 3 - Secure Database Access
d. Control 4 - Encode and Escape Data
e. Control 5 - Validate All Inputs
f. Control 6 - Implement Digital Identity
g. Control 7 - Enforce Access Controls
h. Control 8 - Protect Data Everywhere
i. Control 9 - Implement Security Logging and Monitoring
j. Control 10 - Handle all Errors and Exceptions

(4) For more information see, https://www.owasp.org/index.php/OWASP_
Proactive_Controls

(5) The International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC), ISO/ IEC 27034:2011+ , Information Tech-
nology, Security Techniques, Application Security - Provides guidance on
information security for IT Managers, developers and auditors to ensure
computer applications have the necessary level of security.

page 6 2.5 Systems Development

2.5.3.2.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

https://cwe.mitre.org/index.html
https://www.owasp.org/index.php/OWASP_Proactive_Controls
https://www.owasp.org/index.php/OWASP_Proactive_Controls

(6) ISO/ IEC 27034:2011+ - Key purpose is to assist organizations with information
security controls through a set of processes integrated throughout the Systems
Development Life Cycle (SDLC). The standard is a SDLC-method-agnostic;
i.e., it does not mandate one or more specific development methods or
approach; therefore, it complements other systems development standards and
methods without confliction with them.

(7) For more information see, https://iso27001security.com/html/27034.html

2.5.3.2.1.1
(07-10-2020)
Application Security
Controls

(1) Application controls are a form of security that blocks or restricts applications
from executing in ways that put data at risks, and also designed to improve the
quality of data that is input into databases.

(2) The key purpose is to reduce the risks and threats associated with applications
by ensuring the confidentiality, integrity , and availability of data transmitted
between applications. Examples of applications controls include the following:

a. Completeness checks: Controls ensure records are processed from ini-
tiation to completion

b. Validity checks: Controls ensure only valid data is input or processed
c. Identification: Controls ensure unique, unquestionable identification of all

users
d. Authentication : Controls ensure access to the application system by

approved business user only
e. Input Controls: Controls ensure data integrity feeds into the application

system from valid sources
f. Defense-in-Depth: Is a security implementation which has layers of

security implemented to protect an asset from unauthorized access or
modifications. The objective is about layering defense tools in order to
minimize the number of vulnerabilities in applications that would allow the
occurrence of different attacks. For example, if one security layer fails the
next security layer will catch the breach-of-attack at the next security
layer, i.e. Client, Server, Application, and Database protection.

2.5.3.2.2
(07-10-2020)
AD Waivers

(1) IRM 2.5.14 Systems Development, Quality Assurance documents the Applica-
tion Development (AD) Delivery Management & Quality Assurance (DMQA)
waiver process for tracking any project team’s noncompliance of accepted IRS
standards.

2.5.3.3
(07-10-2020)
General Programming

(1) This section of the IRM is based on specific enterprise platforms and
languages - These IRS standards and guidelines pertain to application
program development and documentation efforts.

(2) The objective of this section is to promote the development of programs that
are reliable, modular, easily maintainable, and as portable as possible.

(3) New software tools for application development and decision support may
supplement and/or replace traditional design and programming techniques.
Commercially acquired software packages may reduce development time by
eliminating “detailed” design and programming activities. Off-the-shelf software
packages should be carefully considered before the decision is made to
develop software.

Programming and Source Code Standards 2.5.3 page 7

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.3

https://iso27001security.com/html/27034.html

(4) The scope of this directive is service-wide. This includes software developed
by contractors where the guidelines apply to Assembler Language, COBOL, C
Language, C++ programming, and Java programming.

2.5.3.3.1
(07-10-2020)
Goals

(1) The primary goal of structured programming is to produce working programs
that are: modular, accurate, and self-documenting, so that they are easily read
and maintained by someone other than the original author.

(2) Structured programming includes the following activities:

• Developing specifications for the logic of each module
• Writing structured code to implement the logic of the module
• Using a structured testing methodology that gradually creates a working

program as each module is introduced into the application system

2.5.3.3.2
(07-10-2020)
Basic Principles

(1) Structured programming employs the use of limited syntax (constructs) for
source code, single-entry/single-exit modules, and top-down development.

(2) Base the logic of each module on various combinations of control structures.
The three basic constructs are Sequence, Selection (If-Then-Else), and Repeti-
tion (Do-While)/(Test-First). Two optional constructs include Repetition (Do-
Until)/(Test-Last) and Selection (Case).

(3) Exhibit 2.5.3-4 depicts a flowchart and Structure diagram for each construct.
The actual implementation of these structures will vary according to the re-
quirements of the particular language being used.

(4) Ensure that each module has only one entry point to and one exit point from
the module.

(5) Partition and organize each module, program, and application system into a
hierarchical structure. Structure charts, module specifications, and structured
code are part of the design of a system.

2.5.3.3.3
(01-01-2004)
Design Specifications

(1) Various tools are commonly used to communicate and transition design specifi-
cations to source code. These tools are:

a. Structure charts
b. Module specifications

IRM 2.5.12 - Design Techniques and Deliverables, provides comprehensive
standards and guidelines regarding structure charts and module specifications
during design.

2.5.3.3.4
(07-10-2020)
Documenting, Testing,
and Debugging Source
Code

(1) This section addresses services that must be performed regardless of the
language or platform selected.

page 8 2.5 Systems Development

2.5.3.3.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.3.4.1
(07-10-2020)
Documenting Code

(1) Document each module and paragraph for future modifications or review/use/
modification of the code.

(2) Ensure that all source code is well documented, clear, understandable, and
easy to modify and maintain.

(3) Make each module a small block of source code that does not exceed one
page of printed output (exclusive of comments).

(4) Indent source code statements.

2.5.3.3.4.2
(07-10-2020)
Testing and Debugging
Code

(1) Review, analyze and test the code for consistency, correctness, clarity, and
completeness according to IRS coding standards.

(2) Test the software according to IRM 2.127.1 Testing Standards and Procedures;
and IRM 2.127.2 IT Test Policy and , Information Technology Testing Process
and Procedures.

2.5.3.3.5
(07-10-2020)
Selecting Programming
Languages

(1) For new projects, select the programming language based on IRS standards,
executive leadership mandates, engineering requirements; and Enterprise Ar-
chitecture’s recommendations.

2.5.3.3.6
(07-10-2020)
Data Controls

(1) Data controls must be designed with the purpose of functions of the program,
and variable data types in mind in order to reduce potential conflicts.

(2) This subsection provides general guidelines for developing data controls and
examples of data control types that are often used in system development.
This is not an all-inclusive list of controls, but rather a general framework for
control development.

(3) Data controls must have one purpose for each variable.

(4) Variable scope must be apparent and limited, i.e., the set of program functions
which can access the variable.

(5) Variables must only be “global” as needed. Only functions which require a
variable must have access to it.

(6) Data controls permit an operating entity to verify that the correct operations
have been performed, in the correct manner, with the correct data.

(7) Ensure that Data control considerations comprise an integral part of the design
process.

(8) Place controls as close as possible to the source of the data, e.g., verification
of data immediately after it is entered; block balancing before data is released
to update modules, etc..

(9) Automate controls whenever possible.

(10) Keep controls simple to read and balance, and easy to maintain.

(11) Explain the purpose and use of controls. Describe how the totals were derived.

(12) Record counts must be provided and broken down into logical records for each
run.

Programming and Source Code Standards 2.5.3 page 9

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.3.6

2.5.3.3.6.1
(07-10-2020)
Basic Principles of Data
Controls

(1) Controls refer to the manual and automated measures supported to:

• Preserve the accuracy of data by detecting and/or preventing operator
errors.

• Ensure data is not lost or added, by monitoring balances between
processes.

• Ensure data integrity so programs do not unintentionally change the
values of data.

• Permit appropriate recovery/reconstruction of file data after a system
failure or abnormal termination.

• Safeguard sensitive data to prevent unauthorized access, embezzle-
ment, and other breaches of security.

2.5.3.3.6.2
(07-10-2020)
Programming
Considerations for Data
Controls

(1) Integrate controls into the development effort. The types of controls, and the
amount of detail are dependent upon the size and complexity of the application
system.

(2) Weigh each development effort based on the following operational consider-
ations:

• The amount of operator intervention
• Multi-file/multi-cartridge processing
• Checkpoint/restart capability
• The file ID on all internal reports
• Back-up of control file
• Initialization of working storage and output buffers with spaces and

zeros
• Run to run balancing

2.5.3.3.6.3
(07-10-2020)
Internal Controls

(1) Internal controls are balancing procedures developed to verify the validity of
the processing within a run. Internal controls are usually a response to user
requirements for accuracy, completeness and security within an information
system. Segment these controls into three classes:

a. Controls over input
b. Controls over processing
c. Controls over output

2.5.3.3.6.3.1
(06-01-2002)
Input Controls

(1) Input controls are the most important and the most numerous. Most errors are
generated during input processing. Some common techniques are:

• Check digit verification--Use check digits to review the accuracy of
specific fields. For example, a check digit can help determine whether
an account number is valid.

• Consistency tests--If the application permits it, verify accuracy by
comparing the values of various fields to determine whether the combi-
nations make sense. For example, if the “Country” field indicates that
the record concerns an organization in Canada, the “Postal Code” field
should have a specific alphanumeric format.

• Validity tests--In some cases, fields can take only a limited range of
values, or must have a predetermined format. Matching the actual value
to the allowable values will detect errors. For example, if a field is
supposed to contain a valid U.S. postal abbreviation for a state, “AZ”
would be valid but “A2” would not.

page 10 2.5 Systems Development

2.5.3.3.6.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

• Batch numbering--This technique ensures that transactions are not lost.
Processor checks can be made to assure that all transactions are
accounted for and processed in a logical order.

• Control totals--These totals help avoid errors during data entry. Various
input fields (e.g., check amount or quantity received) are added both
manually and automatically for comparison. In some cases, these totals
are developed for fields that would normally not be added (e.g., account
numbers or social security numbers). These are called hash totals. In
either case, both the expected totals and the individual transactions are
passed to the application system. The application system then recalcu-
lates the totals from the individual records received and compares them
to the expected totals. If they don’t match, an error has been detected.

• Transaction counts--Use this method to keep track of the number of
transactions that should have been processed by the application
system.

2.5.3.3.6.3.2
(06-01-2002)
Processing Controls

(1) There are two major types of processing controls:

a. Run to Run
b. File and Operator

(2) Run to run controls consist of data generation controls and verification
controls:

• Use data generation controls to ensure that the correct version of the
file is being used

• Verification controls ensure that the totals or record counts for the prior
run match the opening totals for the current run (e.g., header/trailer
counts)

(3) File and operator controls are actions that the operator can take to ensure that
the application system is processing the right files and data. The controls can
be as simple as checking a cartridge. Operator intervention should be kept to a
minimum. Operator controls should be very specific and should be accompa-
nied by sufficient operator instruction. For example, if the operator receives a
message on the console: CARTRIDGE LABEL ERROR Enter “R” to retry, “N”
to abort, “A” to accept. The operator should not be able to override this
message.

2.5.3.3.6.3.3
(06-01-2002)
Output Controls

(1) There are three types of output controls:

a. Control Totals
b. Verification Controls
c. Distribution Controls

(2) Use control totals to verify the correctness of the outputs. For example, if an
accounts payable application system generates 236 checks with an expected
value of $395,000.12, the checks could be physically added to verify that the
actual values of the checks were generated.

(3) Use verification controls to coordinate internal and external processes. For
example, to avoid unauthorized loss of blank checks, have the computer keep
track of the expected serial numbers of the preprinted checks and print the
expected number on the check. If the two numbers differ, something is wrong.

Programming and Source Code Standards 2.5.3 page 11

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.3.6.3.3

(4) Use distribution controls to ensure that once an output is printed, it is delivered
to the authorized recipients. This includes having users sign for reports on-site,
as well as controls between sites.

2.5.3.3.6.4
(07-10-2020)
External Data Controls

(1) External controls consist of that information necessary for operations personnel
to perform balancing between and within runs. These controls are manual in
nature and should include precise instructions as to:

• Which output listing/file contains the control data
• What type of control data is being generated, e.g., transaction counts,

hash totals, etc.
• How to balance the various elements of control data, e.g., ITEM 1 +

ITEM 2 = ITEM 3

(2) Accumulate and print controls at the end of processing must include, at a
minimum:

• Counts of total inputs and outputs;
• Balancing counts;
• Information counts;
• Run to run counts; and to
• Generated, dropped and error records,

2.5.3.3.6.4.1
(07-10-2020)
Control Totals

(1) Keep a record of the data as it moves through an application system and is
subjected to a series of manual and automated processes. This can be accom-
plished in two ways:

a. Control Totals
b. Control File

(2) Control totals can be embedded in the process itself. This is not the best
approach since these totals are easily modified.

(3) A separate, highly controlled (limited user access) “control file” is very effective
in that it is not as accessible as the data files. This file should include the
following:

• Block and/or record counts, hash totals, and total counts
• Logical record counts, when they differ from tape-record counts
• Controls on money amount fields (cumulative arithmetic totals)
• Adequate controls to account for all records: including those dropped,

by-passed or combined during processing

2.5.3.3.6.4.2
(07-10-2020)
Intra-Run Controls

(1) Intra-run controls generate and/or present control information to operations
personnel during the execution of the run.

(2) When designing a program, limit the amount of intervention required by opera-
tions personnel. As this is not always possible, consider the following ideas
when developing intra-run controls:

• Enable the run to print all operationally controlled parameters used for
the run

page 12 2.5 Systems Development

2.5.3.3.6.4 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

• Stack all control data to a separate tape/disk file and print at the end of
the job. Don’t clutter the console with control information during pro-
cessing

• Print totals for each run, every time, even when the totals are in balance

2.5.3.3.6.5
(07-10-2020)
Including Data Controls

(1) Include computer generated control lists with record counts by file, file number
and name, money amounts and tape/disk numbers.

(2) Make sure that programs generate identifying information on all internally used
output (e.g., reports). The project/run/file ID will be printed on each page of
printed output. Do not print this information on transcripts, taxpayer letters and
notices, and externally distributed reports.

(3) Include instructions for manually processing the control list.

(4) Include computer generated cartridge numbers on all control lists:

• Print cartridge file ID on controls page (from job number next to the cor-
responding count).

(5) Computer generated hard copy control output for all runs.

(6) List all control features in either the user handbook and/or the Computer
Operators Handbook (COH), explaining:

• The purpose and use of each control
• How they were derived and their meaning
• The cause and meaning of all programmed halts

(7) Assign a unique identifier to each cartridge file.

(8) When processing a multi-reel program that also has multi-file input, use halts
at the end of each file if the accumulated counts are not equal to the record
count in a trailer record.

(9) Institute checkpoint/restart capabilities for any application with estimated or
actual run times that exceed one hour normal processing time as well as for
large programs that process extensive amounts of data.

2.5.3.3.7
(01-01-2004)
File Design and
Cartridge Interface
Formats

(1) This subsection addresses file design and cartridge interface format consider-
ations.

2.5.3.3.7.1
(06-01-2002)
File Design Formats

(1) The following sections include the design of the sequential file and logical data
record formats. They are concerned with the association or grouping of the
data elements into groups and records.

2.5.3.3.7.1.1
(06-01-2002)
Record Format Design

(1) Fixed length records--a file composed of records that are all the same length.

(2) Variable-length records/multiple fixed formats--a file composed of a finite
number of fixed length record sets, where the record lengths within any set are
equal, but the record lengths between sets differ.

Programming and Source Code Standards 2.5.3 page 13

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.3.7.1.1

(3) Variable-length records/variable subscripted format--a file composed of one or
more sets of records whose format consists of a fixed portion followed by a
variable number of repeating groups. These groups must either be fixed in
length, or composed of a fixed portion plus a subgroup whose entries are fixed
in length.

(4) Variable-length records/variable string format--a file composed of records con-
sisting of character strings of unspecified lengths.

2.5.3.3.7.1.2
(07-10-2020)
Defining Data Fields

(1) When defining data fields which will compose a file, do not assign multiple
uses for the same field; e.g., if a field is labeled DATE, the values carried by
that field should be date information in all cases.

(2) Specify all the search key fields, and if possible, place them at the beginning
of the record.

(3) Reduce redundant data fields to the minimum.

(4) Specify sensitivity levels for files. Classify all the sensitive data fields that
require authorization for access.

(5) Restrict data fields to one and only one data item. This is really a VERY
important standard to enforce.

(6) The name should comply with IRM 2.152.3 Information Technology, Data Engi-
neering, Naming Data Elements(s)/Objects(s) to include characteristics such
as:

a. The team must be easily defined
b. The name must reflect and be specific to what is in the field (e.g. IRS-

Mailing-Dt.)
c. Data names must end in a class word, indicating the data type

2.5.3.3.7.1.3
(06-01-2002)
File Design

(1) Use “Fixed” and “variable multiple fixed” formats when possible.

(2) Avoid variable length records/variable subscripted format (i.e., Nth dimensional
groups, where N is greater than 2).

(3) Do not use variable string formats.

2.5.3.3.7.2
(07-10-2020)
Tape Interface

(1) Tape interface standards reduce the difficulty of sharing data between different
users and different application systems. They allow the users to consider only
the logical structure of files, and simplify the transporting and maintenance of
data.

(2) All files created on an application system to be processed on another must:

• Contain only ASCII character data
• Be in either Fixed or Variable format
• Carry signs (+ or -) as a separate, leading ASCII character for signed

numeric data fields. The reason for carrying signs separately , is to
maintain consistency between application systems because of the
Implementor option

(3) All files that are passed between application systems will be limited to 9995
characters per record.

page 14 2.5 Systems Development

2.5.3.3.7.1.2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(4) Record lengths (for variable records) consist of four decimal (ASCII) characters
in the Record Control Word (RCW). The RCW is automatically generated by
the application system and precedes each logical record.

2.5.3.3.8
(04-15-2004)
Date Fields

(1) This subsection pertains to date fields and addresses the following topics:

a. Year
b. Date
c. Gregorian Dates
d. Exceptions

2.5.3.3.8.1
(04-15-2004)
Year

(1) The all year fields format output must be represented as “YYYY” .

2.5.3.3.8.2
(04-15-2004)
Date

(1) Do not store non-date values in DATE fields (i.e., indicators, freeze codes).

(2) Do not use any DATE field to store non-date information, as in the case of
moving all 9 ’s to a field as an indicator of a particular status.

(3) Do not store special characters in any DATE fields.

(4) Make DATE field names meaningful and accurately descriptive of the date
stored in the fields, (e.g., BIRTH-DATE).

(5) Add validity checks for DATE fields entered on screens or at their initial entry
point into Service Application Systems. This includes External Trading Partners
Processing.

(6) Externalize literal usage of dates wherever possible. For example, interest
rates that apply to certain date ranges would be established as a data file or
database table rather than being hard-coded in the program. If at all possible,
eliminate hard-coded dates.

(7) Use system-wide standard DATE routines (either IRS-developed or COTS) in
source code, wherever possible.

2.5.3.3.8.3
(04-15-2004)
Gregorian Dates

(1) All Gregorian dates must be in (YYYYMMDD) format.

2.5.3.3.8.4
(04-15-2004)
Exceptions

(1) Archive data no longer included in regularly scheduled processing need not be
converted.

(2) Transmittal numbers and data set names (including File Names) containing
dates need not be converted.

2.5.3.4
(07-10-2020)
COBOL Programming

(1) This subsection provides establishes controls to ensure COBOL programs are
reliable, maintainable, and portable.

Programming and Source Code Standards 2.5.3 page 15

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.4

2.5.3.4.1
(07-10-2020)
COBOL Overview

(1) The Common Business-Oriented Language (COBOL) is a high-level computer
programming language developed during 1959 created for its portability and
readability of programs as normal English instead of machine language.
COBOL is known best for processing large quantities of business data through
record and data structure methodology. For example, a record clusters hetero-
geneous data: ID, name, age, and address into a single unit. A committee of
computer manufacturers, users, and U.S. government organizations created
CODASYL (Committee on Data Systems and Languages) to establish, oversee
the language standard to ensure COBOL’s portability across dissimilar
systems.

(2) The controls prescribed are applicable to all IRS COBOL programs whether
they are developed by the IRS or outside vendors for the IRS.

2.5.3.4.2
(11-26-2001)
COBOL Basic Principles

(1) The development of structured COBOL programs in accordance with this
section is dependent on structured design.

(2) Structured COBOL code is the implementation of the logic depicted in module
specifications. Module specifications directly correspond to the modules shown
on the structure chart.

(3) Structure charts, and therefore module specifications and structured code, are
based on a top-down design of the application system. Each of the modules
that constitute a structure chart should have a single entry point and a single
exit point. The logic of each of the modules is based on various combinations
of the three control structures: sequence, selection, and iteration.

(4) These principles have been established with the understanding that COBOL
programs are not always maintained by the original author. All structured
programs will have the same visual format. Only the most common formats are
discussed.

2.5.3.4.3
(07-10-2020)
COBOL Structured
Programming

(1) Structured programming is comprised of three logical structures:

a. Sequence
b. Selection
c. Iteration

(2) Sequence structure: In a sequential structure, the commands are executed in
sequence. The flow of the program is to complete one instruction and then
drop down and execute the next instruction and then the next until something
terminates the sequence such as the end of a paragraph.

(3) Selection structure: In a selection structure the processing is dependent on a
condition that is being tested. In COBOL, the selection structure is usually ac-
complished with an IF or an EVALUATE (the implementation of the case
structure in COBOL) or with an implied IF such as the AT END clause in the
READ statement.

(4) Iteration structure (LOOP STRUCTURE): The iteration structure causes
something to be executed over and over again until some condition terminates
the repetition. Additional information is as follows:

a. This structure is essentially the looping structure that has been used in
all of the programs.

page 16 2.5 Systems Development

2.5.3.4.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

b. When defining iteration, there are two basic structures that a language
may implement: Do-While and Do-Until.

c. The difference between the two structures is when the condition is tested.
In the Do-While structure the condition is tested before the loop is
executed while in the Do-Until structure the condition is tested after the
loop has been executed. This means that with the Do-While structure
there is a possibility that the loop will never be executed.

d. The PERFORM...UNTIL used in the sample programs is an example of
the Do-While structure because the condition is tested before the loop is
executed.

2.5.3.4.3.1
(07-10-2020)
COBOL Programming
Standards

(1) This section applies to all divisions of a COBOL program.

(2) COBOL programs must be written in accordance with the American National
Standard Institute (ANSI). Where a standard is not specified in this manual, the
relevant ANSI standard will be considered the established standard.

(3) Begin to insert comment line in these specified areas:

a. IDENTIFICATION DIVISION:
1. Program Name (Prog-ID)
2. Author Name
3. Installation (Usually with multiple locations)
4. Date Written
5. Date Compiled
6. Security Information

b. ENVIRONMENT DIVISION:
1. Configuration Section:

a. Source-Computer - Describes the computer where the source will
be compiled

b. Object-Computer - Specifies the system where the program is
designated/stored
2. INPUT/OUTPUT Section (Associated Input and Output files):

a. FILE-CONTROL
b. I/O CONTROL

c. DATA DIVISION:
1. File Section - Defines the structure of data files
2. Working-Storage Section - Describes data records not part of data
files
3. Linkage Section - Used if your program uses data from another
program

d. PROCEDURE DIVISION::
1. Sections within this division must always start with paragraph names
e.g., MAIN or other descriptive paragraph names that describe their
function.

(4) Place division, section, and paragraph names on a line by themselves and
start in column 8. This also applies to the module names corresponding to
structure chart modules.

(5) Insert a blank line between each Division name and the first statement of the
Division.

(6) Insert a blank line between each Section name and the first statement of the
Section.

Programming and Source Code Standards 2.5.3 page 17

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.4.3.1

(7) Do not split names or words between lines. If possible, avoid splitting literals
between lines.

(8) Only one statement per line is allowed.

(9) With the exception of nested IF or EVALUATE constructs, end each statement
with a period.

(10) Indent statements that are continued on another line at least two spaces from
the starting position of the initial line.

(11) Use blank lines and page ejects effectively.

(12) Use meaningful names. Ensure names conform to IRM 2.5.7 Data Naming
Standards.

2.5.3.4.3.2
(11-26-2001)
COBOL Identification
Division

(1) Include the following paragraphs in the IDENTIFICATION DIVISION of all
programs: AUTHOR, INSTALLATION, SECURITY, and REMARKS. When
necessary, they will be annotated as COBOL comments.

(2) The AUTHOR paragraph will include:

• The name and office symbols of the section(s) responsible for the main-
tenance of the program.

• At a minimum, the name of the last programmer/analyst to write or
modify any of the code of the program.

• It is a good practice to retain the names of the last few authors to allow
quicker access to originators of code if problems arise.

(3) The INSTALLATION paragraph will contain “INTERNAL REVENUE SERVICE”.

(4) The SECURITY paragraph will contain “FOR OFFICIAL USE ONLY”.

(5) REMARKS paragraph will describe the function of the program, the subpro-
grams that are called, the files that are used by the program, and the effective
date. At the developer’s option, this paragraph may also list modified modules
and reasons for modifications after the program has been in production. (This
often leads to quicker resolution of problems.)

2.5.3.4.3.3
(11-26-2001)
COBOL Environment
Division

(1) Start each main clause (for example, the SELECT clause) in column 12.

(2) Start each sub-clause in column 16.

2.5.3.4.3.4
(07-10-2020)
COBOL Data Division

(1) Start FD and 01 entries in column 8. Clauses of FD entries will start in column
12, one clause per line.

(2) Put level numbers in sequential order to allow for future growth (e.g., 01, 05,
10, 15 other than 01, 02, 03). This allows for adding of new fields under a
section without having to renumber a file layout or copybook.

(3) Indent level numbers 4 positions for each subordinate level.

(4) Indent data names (including condition names) 2 columns to the right of the
level number. For example, see the following figure.

page 18 2.5 Systems Development

2.5.3.4.3.2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

COBOL Example - Data Name Indentations

Data Name Indentations

02 NO-MORE-MASTERS-FLAG PIC X(5)

88 NO-MORE-MASTERS VALUE “TRUE”.

88 MORE-MASTERS VALUE “FALSE”.

Figure 2.5.3-1

(5) Start all PIC, VALUE, USAGE, OCCURS, and REDEFINES clauses in the
same column, where possible.

(6) PIC clauses must not contain sequences of more than two identical symbols
(except for edited fields). For example, use PIC X(4) rather than PIC XXXX. An
edited field such as PIC ZZ,ZZZ.99 will be allowed.

(7) Group levels according to function type for example; counters and to be used
as internal program documentation.

(8) Ensure that local variables and constants associated with one module immedi-
ately follow each other in the DATA DIVISION. If a variable or constant is
associated with more than one module, it should usually be defined with the
highest level module that references it.

(9) Do not give flags and indexes multiple uses.

(10) Initialize constants, variables and output record areas by using the initialize
statement or as follows:

• Initialize constants in working storage, including FILLER fields, with a
VALUE clause. Use VALUE SPACES or ZEROS, not “b” or “0”.

• Initialize the variables in working storage (i.e., those fields that are
changed during execution of the program) by using specific statements
in the PROCEDURE DIVISION.

• Initialize output record areas to clear buffers that are not overlaid during
program execution. One way to initialize an output record area is to
move SPACES to the record as a group item, and then move ZEROS to
the numeric fields.

(11) Use meaningful data names derived from the problem being solved. Where
applicable, data names should be consistent with those used in the structure
charts. COBOL allows names of up to 30 characters. Ensure that names
conform with IRM 2.152.3 .

(12) Avoid data names that convey little meaning. For example, see the following
figure

COBOL Example - Data Naming Standard

INDEX, I, K, TR127, COUNTER, EOT.

Figure 2.5.3-2

Programming and Source Code Standards 2.5.3 page 19

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.4.3.4

(13) Use data names that convey meaning. For example, see the following figure.

COBOL Example - Meaningful Data Names

MESSAGE-INDEX

TRANSACTION-COUNT

NO-MORE-TRANSACTIONS-FLAG

Figure 2.5.3-3

(14) Apply the PIC 9 versus PIC X standard to date fields in the following manner:

• Use PIC 9 for date fields in situations where the particular date value in
question will be used for numeric functions (e.g., calculations, computa-
tions, estimations, etc.) rather than for accepting input or direct display.
Assign four positions to the year field (YYYY) and do not store non-date
values or special characters in the date field.

• Define the data as necessary (PIC X, PIC 9, PIC S9, or another format)
in order to accommodate input that may be blank, coming from elec-
tronic files, External Trading Partners (e.g., SSA), taxpayer submitted
files, DB2 special formats, unique database machine formats, or other
formats. It is not necessary to use PIC 9 when defining fields that are
accepting input.

• Define the data as necessary (PIC X, PIC 9, PIC S9, or another format)
in order to display data (e.g., reports, screens) or format/unformat
display dates that contain special characters in edit fields (e.g., slashes,
commas, dashes, etc., depending on the function requested). However,
note that the Year Field must be four positions (YYYY). It is not
necessary to use PIC 9 when displaying data.

2.5.3.4.3.5
(07-10-2020)
COBOL Procedure
Division

(1) A functional module should be limited to 50 lines of executable code as a
general rule.

(2) Each module (not each paragraph within a module) must start on a new page
with comment lines indicating the module number of the Structure Chart that is
represented by the code and the function of the module as described on the
Module Specification. For example, see the following figure.

page 20 2.5 Systems Development

2.5.3.4.3.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

COBOL Example - Structure Chart

Structure Chart Example

/** MODULE 2.4.3.7

*

* (Description of module)

*

* GET-VALID-TRANSACTION.

READ TRANSACTION-FILE

AT END

MOVE “TRUE” TO NO-MORE-TRANSACTIONS-FLAG.

--rest of code--

Figure 2.5.3-4

(3) Module names in a COBOL listing must correspond to Structure Chart module
names.

(4) Name a paragraph that is an implementation of a control structure (e.g.,
PERFORM-UNTIL, ELSE, CASE, nested IF-THEN-DO-UNTIL, etc.) in a way
that explains its purpose. These paragraphs are not separate modules; they
are paragraphs within the module.

(5) Arrange modules in a program listing in either a horizontal or a vertical
sequence corresponding to the Structure Chart level numbers, see Figure
2.5.3-8

Programming and Source Code Standards 2.5.3 page 21

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.4.3.5

COBOL Example - Structure Chart Level Numbers

Structure Chart Level Numbers

0.0 0.0

1.0 1.0

2.0 1.1

3.0 1.2

1.1 2.0

1.2 2.1

2.1 2.1.1

2.2 2.1.2

2.3 2.1.2.1

2.1.1 2.1.2.2

2.1.2 2.1.3

2.1.3 2.2

2.2.1 2.2.1

2.2.2 2.2.2

2.1.2.1 2.3

2.1.2.2 3.0

etc. etc.

Figure 2.5.3-5

(6) Code the READ statement and WRITE statement options one per line,
indented 2 columns. See the following figure.

COBOL Example - Read/Write Statement Options

READ file-name WRITE record-name

AT END AFTER ADVANCING
identifier LINES

statements. statement.

or, or,

READ file-name WRITE record-name

INVALID-KEY INVALID-KEY

statements. statement.

Figure 2.5.3-6

page 22 2.5 Systems Development

2.5.3.4.3.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(7) Place phrases such as AT END, WHEN, and VARYING on the next line
indented two columns.

(8) Begin any statement not covered by other indentation rules in the same
column as the statement above it.

(9) Never use the ALTER verb (or any other method of dynamically altering the
PROCEDURE DIVISION).

(10) Do not use the GO TO verb, except in the implementation of the CASE
construct or in the use of internal SORT exits.

(11) Handle all file openings and closings in any given module with one OPEN or
CLOSE statement. The following figure depicts these formats:

COBOL Example - Opening and Closing Statements

Opening and Closing Statements

OPEN INPUT file-name-1

file-name-2

OUTPUT file-name-3

file-name-4

CLOSE file-name-1

file-name-2

Figure 2.5.3-7

(12) Immediately follow the MOVE CORRESPONDING statement with a comment
documenting all data items involved. This ensures thorough documentation.
For example, see the following figure.

COBOL Example - MOVE CORRESPONDING Statement

MOVE CORRESPONDING RECORD-A TO RECORD-B

*FIELD-1, FIELD-3, FIELD-5.

Figure 2.5.3-8

(13) Use the COMPUTE verb to develop Arithmetic operations with the following
exceptions:

• Use the DIVIDE statement to compute remainders.
• ADD X to (counter) and SUBTRACT X from (counter) are allowed.

(14) STOP RUN must only occur once as the last logical statement in the main
procedure of a program. EXIT PROGRAM may only occur as the last logical
statement of the main procedure of a subprogram. EXCEPTION: In some
cases, it may be justifiable to use a STOP RUN in a low-level module of a very

Programming and Source Code Standards 2.5.3 page 23

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.4.3.5

large run. While using an On-Line program Customer Information Control
System (CICS) in this case you need the GOBACK statement.

(15) A PERFORM statement must be used one at a time and contain a coinciding
EXIT statement for each, preventing errors or executing the wrong code. Ex-
plicitly identify paragraphs e.g., the following two figures. The first figure
illustrates a statement that would not satisfy this standard. The second figure
illustrates a statement that satisfies this standard.

COBOL Example - PERFORM Statements

COBOL PERFORM Statements

PERFORM Paragraph-A.

PERFORM 0100-COMPUTE THRU 0100-EXIT

PERFORM Paragraph-B.

PERFORM 0200-COMPUTE THRU 0200-EXIT

Figure 2.5.3-9

(16) The following figure illustrates the CASE/CASE-END statements standard.

COBOL Example - CASE/CASE-END Statements

PERFORM Case-Paragraph

THRU Case-End-Paragraph.

Figure 2.5.3-10

(17) When a module is invoked via a PERFORM statement, represent the
parameter table shown on the Structure Chart with comment lines. In the
following figure, Parm-3 is both input to and output from Module-X.

COBOL Example - PERFORM Statement,

PERFORM MODULE-X.

* ** USING: Parm-1,Parm-2,Parm-3

* ** GIVING: Parm-3,Parm-4,Parm-5

Figure 2.5.3-11

(18) When a module is invoked via a CALL statement, do not list the USING phrase
as a comment line as it is part of the syntax. Group all parameters shown on
the Structure Chart Diagram that are passed between the main program and
the called module so that all of the input parameters precede the output pa-
rameters. Represent the GIVING phrase as a comment line and identify the
output parameters (since COBOL does not make the distinction between input
and output parameters). In the following example Parm-1 through Parm-5 are
listed in the USING phrase, but not as a comment line. Any output parameter

page 24 2.5 Systems Development

2.5.3.4.3.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

that is input to the module, such as Parm-3 illustrated in the following figure, is
listed in the GIVING as a comment (so that it is not listed twice in the program
code).

COBOL Example - CALL Statement

CALL Module-X

USING Parm-1,Parm-2,Parm-3

* ** GIVING Parm-3,

Parm-4,Parm-5.

Figure 2.5.3-12

(19) The PERFORM verb has 5 acceptable formats:

• PERFORM Paragraph-Name.--This format is used with USING and
GIVING comment statements to implement a module call, or used
without the comments to PERFORM paragraphs within a module (e.g.,
nested IFs, or the body of the PERFORM-UNTIL structure.

• PERFORM Paragraph-Name UNTIL Terminating--Condition.
• PERFORM Line-Spacing-Paragraph Line-Count TIMES--This option

executes a procedure a set number of times.
• The PERFORM-UNTIL may also be used to vary a subscript or index as

in a table-search routine. See the following figure.

COBOL Example - PERFORM Verb and Acceptable Formats

PERFORM Table-Search

VARYING Table-Index

FROM 1 BY 1

UNTIL Match-Found

OR Table-Index GREATER THAN
Max-Entries.

Figure 2.5.3-13

(20) Implement the DO-UNTIL structure in one of two ways. The first way is a
PERFORM/PERFORM-UNTIL combination. See

COBOL DO-UNTIL Example 1

PERFORM Paragraph-Name.

PERFORM Paragraph-Name

UNTIL Terminating-Condition.

Figure 2.5.3-14

(21) The second way to implement a DO-UNTIL structure is to use a switch to
terminate the loop. See Figure 2.5.3-15

Programming and Source Code Standards 2.5.3 page 25

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.4.3.5

COBOL DO-UNTIL Example 2

MOVE True to Loop-Predicate.

PERFORM Paragraph-Name

UNTIL Loop-Predicate = False.

...

Paragraph-Name.

. . . Statements . . .

IF Terminating-Condition

* THEN

Move False to
Loop-Predicate.

* END-IF

Figure 2.5.3-15

(22) The following figure illustrates the format of the IF-THEN-ELSE statement.

COBOL Example - IF-THEN-ELSE Statement

IF Condition

* THEN

True-Procedures

ELSE

False-Procedures.

* END-IF

Figure 2.5.3-16

(23) The ELSE part of the IF statement is optional when there are no actions to be
taken (i.e., “ELSE NEXT SENTENCE” is not required). The THEN and END-IF
comments are required. The True-Procedure and False-Procedure statements
are indented 2 spaces from their corresponding THEN or ELSE. The IF and
the corresponding END-IF keywords start in the same column. The THEN and
ELSE keywords are indented 2 spaces in from the IF. As a guideline, the
positive condition (rather than the negative) should be tested in a conditional
statement. In a compound conditional statement, negative and positive tests
should not be mixed.

(24) When there are compound conditions associated with an IF statement, ensure
that the statement is as readable as possible. The best method of doing this
depends on the particular condition. The following figures illustrate the two
formats.

page 26 2.5 Systems Development

2.5.3.4.3.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

COBOL Example 1, IF-THEN-ELSE Statement Based on Conditions

Format 1 – Putting each condition on a separate line:

IF Condition-1

OR Condition-2

* THEN

True-Procedures

ELSE

False-Procedures.

* END-IF

Figure 2.5.3-17

COBOL Example 2, IF-THEN-ELSE Statement Based on Conditions

Format 2 – Using parentheses to specify the order of evaluation
for the individual conditions of more complex conditions:

IF ((Condition-1) OR (Condition-2))

AND Condition-3

* THEN

True-Procedures

ELSE

False-Procedures.

* END-IF

Figure 2.5.3-18

(25) Do not nest IF statements more than 3 levels deep. See the following figure.

Programming and Source Code Standards 2.5.3 page 27

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.4.3.5

COBOL Example - Nested IF Statements

* THEN

IF Condition-2

AND Condition-3

* THEN

True-Procedure-1

ELSE

False-Procedure-1

* END-IF

ELSE

False-Procedure-2.

* END-IF

Figure 2.5.3-19

(26) If it appears that the nesting has to be more than 3 levels deep or even if the
statement looks “cluttered” at 2 or 3 levels then PERFORM the inner test con-
ditions. See the following figure.

page 28 2.5 Systems Development

2.5.3.4.3.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

COBOL Example - PERFORM Inner Test on Nested IF Statements

Inner Test on Nested IF Statements

IF Condition-1

* THEN

PERFORM Inner-Test

ELSE

False-Procedure-2.

* END-IF

.

.

Inner-Test.

IF Condition-2

AND

* Condition-3

* THEN

True-Procedure-1

ELSE

False-Procedure-1.

* END-IF

Figure 2.5.3-20

(27) Implement the “Nested IF” of the SELECT-CASE construct as prescribed in the
following figure. Note that this format is different from a normal IF-THEN-ELSE
statement.

Programming and Source Code Standards 2.5.3 page 29

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.4.3.5

COBOL Example - Using SELECT-CASE for
Nested IF-THEN ELSE Statements

* SELECT CASE.

IF Condition-1

* CASE-1:

Case-1-Statements

ELSE

IF Condition-2

* CASE-2:

Case-2-Statements

ELSE

IF Condition-3

* CASE-3:

Case-3-Statements

ELSE

* Error-CASE:

Error-Case-Statements.

* ENDCASE

Figure 2.5.3-21

(28) Use the EVALUATE statement instead of long nested IF statements to test
several conditions and specify different actions for each. The WHEN phrases
determine selection. Case statements usually consist of the following
commands; MOVE, ADD, PERFORM, etc..

page 30 2.5 Systems Development

2.5.3.4.3.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

COBOL Example - EVALUATE Statement

EVALUATE STATEMENT

EVALUATE X

WHEN ‘A’

CASE 1 Statements (MOVE, ADD,
PERFORM)

WHEN ’B’

CASE 2 Statements (MOVE, ADD,
PERFORM)

WHEN OTHER’

Error-Case-Statements

END-EVALUATE:

Using ALSO and
WHEN:

WHEN (Age < 16 ALSO Gender = ‘M’)

Using AND WHEN (Age < 16 AND Age > 13)

Figure 2.5.3-22

2.5.3.4.4
(07-10-2020)
COBOL Compile
Run-Time Warning
Messages

(1) Currently IRS applications hosted on IRM Mainframes, and have migrated to
Enterprise COBOL compiler version 6.2. When COBOL programs are written
they have to be compiled into object-code from source-code in order to be
read by the computer. Some compiler warnings are more severe than others.
The following warnings messages identified must be cleared before source-
code can be moved into production:

• Warning messages like: IGZ0279W, IGZ0316W and IGZ0318W - will
display for new COBOL compiler with the first two characters UL or UO
(PROCGRP) with (e.g. UL2NCL vs. DB2NCL, ULNBL vs NCNB),
(ADD INITCHECK?)

• Example Warning message - IGZ0279W The value data-item-value of
data item data-name at the time of reference by statement number
verb-number on line line-number in program program-name failed the
NUMERIC class test or contained a value larger than the PICTURE
clause as detected by the NUMCHECK compiler option. See exhibits (a
-f) for more examples.

2.5.3.5
(07-10-2020)
C Programming

(1) This section of the IRM provides guidelines for coding C programs and naming
C program components.

Programming and Source Code Standards 2.5.3 page 31

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5

2.5.3.5.1
(07-10-2020)
C File Naming

(1) Create the file names from a base name and an optional period and suffix.

(2) Store very large files by date (for archive or delete). Make the date a part of
the name (e.g. log files).

(3) Make the first character of the name a letter.

(4) Assign a file name that is unique in as large a context as possible.

(5) Use uppercase and lowercase letters to name source code files like “percentO-
fLargest” or “PercentOfLargest”.

(6) Include comments in the module so other programmers will understand the
modules’ purpose (ie., Title Section).

(7) Use System Name followed by file name. For example, the application system
is Telefile (or EMS, TEPS, EFDS, EFTPS, etc.) and the file name is Return-
Data.

(8) Include comments on the name

(9) Maintain a consistent File Naming Convention (FNC) by referencing IRM
2.152.3 IT, Data Engineering, Naming Data Elements/Object(s) as a guide.

2.5.3.5.2
(01-01-2004)
C Source Code Files

(1) Size Considerations:

1. Limit the size of a source code file to 1000 lines as large source code
files can be very cumbersome.

2. Per each line in a source code file, limit the number of characters per line
to 163 or fewer characters.

3. Decompose long lines into smaller pieces, such that when the file is
printed, all portions of the code will print out legibly.

4. Indent subsequent sections of a longer line so that it is clear that these
are continuations of the line above.

5. In the length of a line, include any commentary that follows the code on
the line.

6. Where a function exceeds two pages, reexamine the design of the
function.

7. Especially consider if more than one function is involved or if sub-
functions would be better in separate modules.

8. If functions are short and related to each other, then place them in same
source code file.

(2) Composition:

1. Prologue
2. Includes
3. Defines and Typedefs
4. Global Definitions
5. Function Placement

2.5.3.5.2.1
(07-10-2020)
C Prologue

(1) Make the prologue first in the file as it indicates what is in that file.

page 32 2.5 Systems Development

2.5.3.5.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(2) Use a description of the purpose of the objects in the files (whether they be
functions, external data declarations or definitions or something else) rather
than a list of the object names. A description of the method(s) used is helpful
for any complex function.

(3) Avoid making descriptions so detailed that maintenance of the header takes
more effort than is gained by increased understanding of the code itself.

2.5.3.5.2.2
(07-10-2020)
C Includes

(1) Header files are files that are included in other files prior to compilation by the
C preprocessor.

(2) Place the header file after the prologue. If the include line is for a non-obvious
reason, comment the reason. In most cases, application system includes files
like “stdio.h” should be included before user include files.

2.5.3.5.2.2.1
(07-10-2020)
C Header File
Organization

(1) Relate all functions in a given header file to the same general function, i.e.,
declarations for separate sub-systems should be in separate header files.
Example: all functions in the header file “stdio.h” either perform or assist in the
performance of input and output.

(2) Do not use any function implementations, except macros in Header files.

(3) Within a header file, group functions that perform related tasks in the same
section. Example: within the file “stdio.h”, all functions in the scanf family must
be placed together.

(4) Define and include certain header files, such as “stdio.h” at the application
system level and for any program using the standard I/O library.

(5) Use Header files to contain data declarations and defines that are needed by
more than one program.

(6) Organize header files functionally, i.e., declarations for separate subsystems
should be in separate header files.

(7) If a set of declarations is likely to change when code is ported from one
machine to another, place those declarations in a separate header file.

(8) Use “<>” “<stdio.h>” for system include files and double quotes (“user.h”) for
user include files.

2.5.3.5.2.2.2
(07-10-2020)
C Header File Inclusion
in the File that defines
the Function

(1) Include Header files that declare functions or external variables in the file that
defines the function or variable. This allows the compiler to do type checking
and the external declaration will always agree with the definition.

(2) To prevent accidental double-inclusion, in each .h file, use code like the
following.

C Example - Header File Inclusion for Functions

Header File Inclusion

#ifndef EXAMPLE:

#define EXAMPLE

... /* body of example.h file */

Programming and Source Code Standards 2.5.3 page 33

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.2.2.2

Header File Inclusion

#end-if /* EXAMPLE */

(3) Use a general-purpose header file for commonly used symbolic constants.

2.5.3.5.2.2.3
(07-10-2020)
C Nested Header Files

(1) Do not nest Header files. The prologue for a header file must describe what
other headers need to be included for the header to be functional.

(2) Where a large number of header files are to be included in several different
source files, put all common include statements in one include file.

2.5.3.5.2.2.4
(07-10-2020)
C Header File Names

(1) Avoid private header filenames that are the same as public header filenames.
The statement #include “math.h” must include the standard library math header
file if the intended one is not found in the current directory. If this is what you
want to happen, comment this fact.

(2) Don’t use absolute pathnames for header files. Use the <name> construction
for getting them from a standard place, or define them relative to the current
directory. Use the “include-path ”option of the C compiler (-I on many applica-
tion systems) used in the Makefile to handle extensive private libraries of
header files; it permits reorganizing the directory structure without having to
alter source files.

2.5.3.5.2.3
(07-10-2020)
C Defines and Typedefs

(1) Place the defines and typedefs that apply to the file as a whole after the
includes.

(2) Place a Define before the header files so that they will apply to the header
files.

(3) Place “constant” macros first, then “function”’ macros, then typedefs and
enums.

2.5.3.5.2.4
(07-10-2020)
C Global Definitions

(1) Place the global (external) data declarations after the Defines/Typedefs.

(2) Use the order:

a. Externs
b. Non-static globals
c. Static globals

(3) Place the defines immediately after the data declaration or embedded in
structure declarations when a set of defines applies to a particular piece of
global data (such as a flags word). Ensure defines are indented to allow one
level deeper than the first keyword of the declaration to which they apply.

2.5.3.5.2.5
(07-10-2020)
C Function Placement

(1) Place the functions last.

(2) Place like functions together.

(3) Use a “breadth-first” approach (functions on a similar level of abstraction
together) rather than depth-first (functions defined as soon as possible before
or after their calls).

page 34 2.5 Systems Development

2.5.3.5.2.2.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(4) Use alphabetical order when defining large numbers of independent utility
functions.

2.5.3.5.3
(07-10-2020)
C Other Files

(1) For operator-directed programs, establish a file called “Readme” to document
both the file and issues for the program or a group of programs. For example,
it is common to include a list of all conditional compilation flags and what they
mean.

(2) List files that are machine dependent, etc.

2.5.3.5.4
(07-10-2020)
C Global Variable
Declarations

(1) The following subsections address global variable and structure declarations.

2.5.3.5.4.1
(07-10-2020)
C Global Variables

(1) Avoid the use of global variables unless you have cases where the use of
global variables can actually make a program more readable by not cluttering
function calls. Instead, pass variables by reference to functions that change
their value.

(2) Declare any global variables at the top of a file, before any function declara-
tions.

(3) Declare variables, which are global to only the functions in a single file, as
“static”.

(4) Use meaningful names (MaxLength=30 characters).

(5) Separate the words of a compound variable by capitalizing the first letter of
every word.

(6) Start pointer names with “p”.

(7) Separate unrelated declarations, even of the same type, on separate lines.

(8) Tab the names, values, and comments so that they line up. See the following
table.

C Example - Using Global Variables

int EventInit; /* event_init performed */

char TaxFormType; /* type of the tax return form /

char *pFirstEntry; /* ptr to 1st entry */

2.5.3.5.4.2
(07-10-2020)
C Structure Declaration

(1) Declare each field in a structure on a separate line.

(2) If you declare a local structure – use lower case for the names. If you declare
a global structure – use mixed case for the names. The variables that
comprise the structure (structure elements) must follow the same rule as local
or global variables

(3) Assign a structure to a variable in a separate statement.

Programming and Source Code Standards 2.5.3 page 35

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.4.2

(4) Recommended Styles:

1. The following table illustrates a style where the opening brace ({) should
be in column 1 on a next line after the structure tag, and the closing
brace (}) should be in column 1.

C Example 1 - Recommended Syntax Structure

struct ECT_REG_HEADER_S

{

char *pFirstEntry; /* ptr to 1st registry entry */

int NumEntries; /* number of entries */

}

2) The following table illustrates a style where the opening brace ({) should be
on the same line as the structure tag, and the closing brace (}) should be in
column 1. Choose one of these styles for the opening brace ({) and consis-
tently use it.

C Example 2- Recommended Syntax Structure

struct ECT_REG_HEADER_S {

char *pFirstEntry; /* ptr to 1st registry entry */

int NumEntries; /* number of entries */

}

2.5.3.5.4.3
(07-10-2020)
C Typedef Declaration

(1) Typedef which stands for “type definition” is a reserved keyword in C and C++,
and allows the programmer to create an alias that can be used anywhere in
place of a complex type name.

• Use in C language to assign an alternative name to existing datatypes

(2) Structures may use Typedef keyword when they are declared. See example
below

C Example of Typedef

Reserved Keyword (Typedef)

typedef <existing_name> <alias_name>

2.5.3.5.5
(07-10-2020)
C Local Variable
Declarations

(1) Do not use names with leading and trailing underscores for any user-created
names as they are reserved for application system purposes. Most application
systems use them for names that the user should not have to know.

page 36 2.5 Systems Development

2.5.3.5.4.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.5.5.1
(07-10-2020)
C Local Variable Names

(1) The following paragraphs cite guidelines.

(2) Declare local variables at the start of, or just before, the block in which they
are used. If the variable name is going to be reused in a different block in the
same function then declare the variable at the start of the function.

(3) Do not have a function contain two variables with the same name.

(4) Avoid declaring variables within any block, (e.g., within a “for” block).

(5) Use meaningful names (max_length=30 characters).

(6) Begin all variable names with a lowercase letter.

(7) Place the pointer qualifier, * with the variable name rather than with the type.

(8) Separate unrelated declarations, even of the same type, on separate lines.

(9) Include a comment describing the variable in the same line.

(10) Tab the names, values, and comments so that they line up. An example
follows.

C Example - Local Variable Names

Local Variables Names

int event_init; /* event_init performed */

Char tax_form_type; /* type of the tax return
form */

Char *first_entry_p; /* ptr to 1st entry */

2.5.3.5.5.2
(07-10-2020)
C Typedef Declaration

(1) Give the struct and typedef the same name. Apply the same rules as for a
structure declaration.

2.5.3.5.5.3
(07-10-2020)
C Abbreviations for
Common Variable

(1) Use conventional abbreviations for common variables.

C Example - Common Variable Abbreviations

Variables Abbreviations

average avg

database db

Length len

message msg

number num

position pos

String str

Programming and Source Code Standards 2.5.3 page 37

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.5.3

2.5.3.5.6
(07-10-2020)
C Constants

(1) This subsection addresses constants and enumeration data.

2.5.3.5.6.1
(07-10-2020)
C Defining Constants

(1) Avoid coding numerical constants directly.

(2) Declare numerical constants to facilitate changes when it is used throughout
the whole program; and use actual numbers in small scope code.

(3) Use symbolic constants to make the code easier to read.

(4) Define the value in one place to make it easier to administer large programs
since the constant value can be changed uniformly by changing only the
define.

2.5.3.5.6.2
(07-10-2020)
C Consistency of
Constant Definitions

(1) Consistently define constants with their use, (e.g., use 540.0 for a double
instead of 540 with an implicit float cast).

2.5.3.5.6.3
(07-10-2020)
C Conventional
Constants

(1) Use a conventional set of symbolic constants for constants common to C
coding:

C Example - Using Conventional Constants

Conventional Set
of

Symbolic Constants

TRUE Defined by system supplier headers. Do not
redefine.

FALSE Defined by system supplier headers. Do not
redefine.

#define FALSE 0 Defined by system supplier headers. Do not
redefine.

#define TRUE
!FALSE

Defined by system supplier headers. Do not
redefine.

LF_CHAR Line feed character

CR_CHAR Carriage return character

EOS End of string character

EOF Defined by system supplier headers. Do not
redefine.

2.5.3.5.6.4
(07-10-2020)
C Enumeration Data

(1) Use the enumeration data type to declare variables that take on only a discrete
set of values, since additional type checking is often available.

(2) Declare each field in an enum on a separate line.

(3) Ensure the enum type name has a tag, in upper case with “_E” appended to
their name.

page 38 2.5 Systems Development

2.5.3.5.6 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(4) Ensure each field in an enum type is in upper case separated by underscores.

C Example - Enumeration Data

Example of Enumeration Data

enum ACMW_E

{

ACMW_IB_TP_INTERFACE = 5001,

ACMW_IB_USER_VALIDATION = 5002

}

2.5.3.5.6.5
(07-10-2020)
C Symbolic Constants -
#define

(1) Name all quantities that must remain unchanged throughout a program using
the “#define” capability. The defined name must be in upper case letters.

C Example - Symbolic Constants

Symbolic Constants

#define FEP_FAILURE “FEP ACKNOWLEDGMENT_FAILURE”

#define AT_AUDIT_NAME “7”

2.5.3.5.7
(07-10-2020)
C Functions

(1) This subsection addresses:

a. return values
b. parameter lists
c. function body
d. function prototype
e. function naming

2.5.3.5.7.1
(07-10-2020)
C Return Values

(1) Explicitly declare all return values.

(2) Do not default to int; if the function does not return a value then give it return
type void.

(3) If the value returned requires a long explanation, give it in the prologue.

2.5.3.5.7.2
(07-10-2020)
C Parameter Lists

(1) If the function and its parameter list is longer than one line, indent lines after
the first one from the left margin so that the second line of the parameter list
starts directly below where the parameter list begins on the first line.

(2) Ensure a function that returns information via one or more of its parameters
only returns status information in its name.

(3) Ensure each parameter passed to a function occurs on a separate line in the
function prologue with a short comment describing its function.

Programming and Source Code Standards 2.5.3 page 39

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.7.2

2.5.3.5.7.3
(07-10-2020)
C Function Body

(1) Tab all local variable declarations and code within the body over one stop.

(2) Place the opening brace, “{”, opening the body of the function on a line by
itself and left justified or at the end of the line which introduces the block. Any
control statements will cause further indentation from this basic indentation.

(3) If the function uses any external variables (or functions) that are not declared
globally in the file, provide the declarations in the function body using the
extern keyword.

(4) Avoid local declarations that override declarations at higher levels.

(5) Redeclare local variables in nested blocks.

(6) Ensure that a single return statement is always present with a parameter if the
function is not of type void. Use one even if the function has no return value
and, therefore the C language does not require a return. This can be useful for
setting a break point during debugging.

(7) Place a closing brace, “}”, closing the body of the function, on a line by itself
and left justified.

2.5.3.5.7.4
(07-10-2020)
C Function Prototype

(1) Generate Function Prototype for all functions generated.

2.5.3.5.7.5
(07-10-2020)
C Function Naming

(1) Select a naming convention (capitalization, underscores, etc.) and use it con-
sistently.

(2) For naming services:

• Limit service name to 12 characters. Longer names, when accepted, by
Tuxedo, will be truncated to 12 characters.

• Begin all service names with an uppercase letter.
• Separate the words of compound service names by capitalizing the first

letter of every word.

2.5.3.5.8
(07-10-2020)
C Comments

(1) Use comments in your programs to meet the following three (3) goals:

a. Clear and concise
b. Place where needed
c. Useful to read the code

(2) Strive to balance the amount of comments with the amount of whitespace to
maintain readability and clarity.

(3) Make sure the comments describe what is happening, how it is being done,
what parameters mean, which globals are used and which are modified, and
any restrictions or bugs.

(4) Avoid comments that are clear from the code. Such information rapidly gets
out of date, is redundant and clutters the code.

page 40 2.5 Systems Development

2.5.3.5.7.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.5.8.1
(07-10-2020)
C Template for File and
Header

(1) Place the following header at the beginning of the file:

C Example - Header in a File

/***

//

// Internal
Revenue Service

// For Official Use
Only

//

//

// Filename: Filename

// Description: Describe the purpose of the objects in the file,

// followed, in the case of source files, by a list of

// functions whose definitions appear in the file

// Related Files: An identification of any routines or files that this

// file may require

// Restrictions/ Known special cases where the file may not work

// Problems:

//

// Date Modified: Date: YYYY/MM/DD

// Version id: Revision:

// Author: Author: <First Name> <Last Name>

// Locked by: $Locker: $

//

// Revision
History:

To clearly identify all the changes, when doing
code reviews, print out the information. Look at
ClearCase to identify the revision date. If enough
information is there, look at the header for
specifics. Not putting it in the code reduces your
options to hoping the ClearCase information is
sufficient, and doing a line-by-line review in
ClearCase until you find the change.

(2) Place the following header at the beginning of the function:

C Example - Header at Beginning of Function

/**********************

* Function Name:

Programming and Source Code Standards 2.5.3 page 41

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.8.1

* Description: A description of the major task(s) performed
by

* routine. It should be a series of one or more
simple

* verb/object statements

* Input parameters:

* Output parameters

**/

2.5.3.5.8.2
(07-10-2020)
Function Comments

(1) Place comments that describe data structures, algorithms, etc., in block
comment form.

(2) Present code in paragraph form prior to a block of code.

(3) Use comments for cohesive blocks of code when they explain the purpose of
the block in accomplishing a cohesive task. This enables the reader to under-
stand the function being implemented. Thus, the reader will be able to quickly
find the appropriate section of code without getting bogged down in coding
details for other sections of code. For example:

C Example 1- Function Comments

/***

* LOCAL VARIABLES and CONSTANTS *

**/

/**

* cleanup_pipeline PROCESSING *

**/

(4) Indent block comments to the same level as the block being described.

(5) Indent one-line comments alone on a line to the tab setting of the code that
follows. For example:

C Example 2 - Function Comments

Function Comments

if (argc > 1)

{

/* Get input file from command line. */

if (freopen(argv[1], “r ”, stdin) == NULL)

{

perror (argv[1]);

page 42 2.5 Systems Development

2.5.3.5.8.2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Function Comments

}

}

(6) Very short comments may appear on the same line as the code they describe,
but must be tabbed over to separate them from the statements.

(7) If more than one short comment appears in a block of code, they must be
tabbed to the same tab setting. For example:

C Example 3 - Use of Multiple Short Function Comments

if (a == EXCEPTION)

{

b = TRUE; /* special case */

}

else

{

b = isprime(a); /* works only for odd a
*/

}

2.5.3.5.9
(07-10-2020)
C Statements

(1) This subsection addresses the following topics related to statements:

a. Statements per Line
b. Single Statement Blocks
c. Multiple Statement Blocks
d. Levels of Control Structure Nesting
e. Goto Statement
f. Break Statement
g. Null Statement
h. Conditional Statement
i. Exit Statement
j. Default Truth Value
k. Increment and Decrement Operators
l. Added Statements for Debugging

2.5.3.5.9.1
(07-10-2020)
C Statements per Line

(1) Generally, source code should depict one statement per line.

2.5.3.5.9.2
(07-10-2020)
C Single Statement
Blocks

(1) Block off even a single statement following a “while”, “if”, “else”, etc.

Programming and Source Code Standards 2.5.3 page 43

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.9.2

(2) Using the curly braces “{}” is required only when there is a block of more than
one statement. However, putting in the braces makes the scope of the control
statement very clear and helps to protect the code in the event that a second
line is added to the block if the single line contains a macro, which translates
into more than one line of code.

C Example - Single Statement Blocks

Single Statement Blocks

if (SomeCondition == TRUE)

{

ThisVariable = SomeVariable;

}

2.5.3.5.9.3
(07-10-2020)
C Multiple Statement
Blocks

(1) Statements that affect a block of code (i.e., more than one statement) must
either have the opening brace “{”at the end of the line containing the control
statement, or the opening brace must be on the line immediately below and
lined up with the first letter of the control statement.

(2) Indent the body of the block one step from the control statement.

(3) Place the ending brace, “}” on a line by itself and at the same indentation level
as the control statement.

(4) Choose one of the two styles and use it consistently:

C Example 1 - Multiple Statement Blocks

Multiple Statement Blocks

1st Style:

If (condition)

{

statements(s)

}

else

if (condition)

{

statements(s)

}

for (loop control expressions)

{

statements(s)

}

page 44 2.5 Systems Development

2.5.3.5.9.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Multiple Statement Blocks

while (condition)

{

statements(s)

}

switch (expression)

{

case constant1;

statement(s)

case constant2;

statement(s)

default;

statement(s)

}

C Example 2 - Multiple Statement Blocks

2nd Style Multiple Statement Blocks

if (condition) {

statement(s)

} else if (condition) {

statement(s)

}

for (loop control expressions) {

statement(s)

}

while *condition) {

statement(s)

}

Programming and Source Code Standards 2.5.3 page 45

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.9.3

2nd Style Multiple Statement Blocks

switch (expression) {

case constant1;

statement(s)

case constant2;

statement(s)

default;

statement(s)

}

2.5.3.5.9.4
(07-10-2020)
C Levels of Control
Structure Nesting

(1) Do not nest conditional statements, such as “while”, “if”, “else”, more than 4
levels. If more levels are required, consider using a function at one of the
higher levels.

2.5.3.5.9.5
(07-10-2020)
C Goto Statement

(1) Do not use the Goto statement.

2.5.3.5.9.6
(07-10-2020)
C Break Statement

(1) If a particular case in a switch statement is meant to drop through to the next
case (i.e., it has the same effect), the fact that the earlier case has no “break”
statement must be explicitly noted with a comment. For example:

C Example - Switch & Break Statement

Switch & Break Statement

switch(switch_form)

{

case P1040 : /* same action as for 1065; no break */

case P1065:

process_1040();

break;

default : /* if not 1040 or 1065, no action taken */

break;

}

2.5.3.5.9.7
(07-10-2020)
C Null Statement

(1) Generally, Null statements should include a comment line.

page 46 2.5 Systems Development

2.5.3.5.9.4 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(2) Place the null body of a “for” or “while” loop alone on a line and commented so
that it is clear that the null body is intentional and not missing code.

C Example - Null Statement

C Null Statement

while (*dest++ = *src++)

; /* VOID */

2.5.3.5.9.8
(07-10-2020)
Conditional Statement

(1) Break out the function call onto a separate line followed by a new line contain-
ing the conditional statement. Often a program will branch based on the
success or failure of a function call. Consider the following excerpts of source
code, the first excerpt is easier to understand than the second excerpt.

C Example 1 - Conditional Statement

Conditional Statement

pFileHandle = fopen(“some_file ”, READ_ONLY);

if (pFileHandle == NULL)

{

printf(“Could not open file; program terminating.”);

TerminateApplication();

}

else

{

DoSomething();

}

C Example 2- Conditional Statement

Conditional Statement

if ((pFileHandle = open(“ some_file”, READ_ONLY))== NULL)

{

printf(“Could not open file; program terminating.”);

TerminateApplication();

}

Else

{

DoSomething();

}

Programming and Source Code Standards 2.5.3 page 47

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.9.8

(2) The preceding “fopen” example demonstrates a style, which helps to avoid
internal side effects. “Side effect” as used in this example refers to the fact that
the reader may focus on the “if (xxx == NULL)” aspect of the statement and
not fully realize that there is a call to “fopen()”. The other danger of this type of
compound statement is the potential for completely changing the meaning if
the parentheses around the“pFileHandle = open()”part are left off.

2.5.3.5.9.9
(01-01-2004)
C Exit Statement

(1) Except for use in error-handling functions, avoid explicit use of the “exit();”
statement.

2.5.3.5.9.10
(01-01-2004)
C Default Truth Value

(1) Use explicit comparison even if the comparison value will never change.

2.5.3.5.9.11
(07-10-2020)
C - Added Statements
for Debugging

(1) If you include statements to print out information during debugging, use prepro-
cessor switch(es) in the makefile to allow compile-time control of the debug
output, and use #ifdef statements to control inclusion of the debug statements.
For example:

C Example - Printing Out Statement for Debugging

#ifdef DEBUG_1

printf(some debug statement);

Fprint(<pointer to FML buffer>);

#end-if

2.5.3.5.10
(01-01-2004)
Operators

(1) Do not use the ternary conditional operator, “?:” in the main program, primarily
to make the code more readable. It can still be used in macros.

(2) An increment or decrement operation should be explicitly placed in a separate
statement so it would be clear what is occurring and when.

(3) Ensure that all operators which take two parameters have a single space on
either side of the operator. This makes it very handy to use an editor to search
for a variable assignment; you need only search for “a =” and not “a =” as well
as “a= ”. It also makes the code more readable.

(4) In contrast to binary operators, ensure that all unary operators (e.g., a minus
sign or the address operator, “&”) have no space between the operator and the
object.

(5) Where operator precedence must be known to determine the meaning of an
expression, use parentheses to eliminate any ambiguity, which might arise
from lack of knowledge of operator precedence. For example, to increment the
variable pointed to by the pointer “pNumTimes”, use “(*pNumTimes)++”. This
use of parentheses makes it clear that the contents of location “pNumTimes” is
being incremented and not the address itself.

(6) The ternary conditional operator may be useful in parameter lists and as a
return value.

page 48 2.5 Systems Development

2.5.3.5.9.9 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.5.11
(01-01-2004)
ESQL/C

(1) This subsection addresses:

a. Database Error Checks
b. Operations
c. Performance
d. SQL Statements

2.5.3.5.11.1
(07-10-2020)
ESQL/C Database Error
Checks

(1) Ensure that all calls to the database have error checking.

(2) If a cursor is used, place an error check immediately after the declare, open,
all fetches, and close cursor.

(3) If a data retrieval error occurs, end the data retrieval processing and the
variable that holds the unretrieved data will be populated with the default value
for missing data as per the application program guidelines. A NULL value is not
acceptable.

2.5.3.5.11.2
(07-10-2020)
ESQL/C Operations

(1) Due to the constraint that not more than one database can be open at a time,
always check to see if a database is open before there is a call to open one.

(2) Before any program exits, close the open database.

(3) Declare cursors in the same function they are used.

(4) Close and free cursors after they are used.

(5) If a SQL error occurs, log the message to display the SQL code, the function
name, the file name, and the error message.

2.5.3.5.11.3
(07-10-2020)
ESQL/C Performance

(1) Minimize overhead processing and optimize memory allocations.

(2) Do not pass more than one variable or structure to an ESQL/C function.

(3) If more than one data value needs to be populated, then create an array. Pass
the pointer of the array to the ESQL/C function.

(4) If more than one variable needs to be populated, then create a structure or a
linked list and pass the structure or linked list pointer to the ESQL/C function.

(5) Two calls must be made to retrieve data for arrays, structures, or linked lists.
In the first call, there must be an ESQL/C function call that returns the number
of values to be collected. The calling function will then allocate memory in the
array or structure to contain the desired data.

(6) In the second call, the data must be populated into the array, structure, or
linked list.

2.5.3.5.11.4
(07-10-2020)
SQL Statements

(1) Test SQL statements individually before embedding them in C code. This
approach will increase the likelihood that the embedded code will work when
properly incorporating the tested SQL statements. This should be a fast risk-
reducing activity and a great enhancement.

(2) Capitalize all reserved words, (i.e., SELECT, UPDATE, INSERT, etc.).

(3) Use ORDER BY only when absolutely needed – if the calling program does
not require sorted data, do not use ORDER BY.

Programming and Source Code Standards 2.5.3 page 49

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.11.4

(4) For negative nested subqueries (selecting rows from a table where some
condition in another table is not true), experiment with both the NOT EXISTS
and NOT IN constructs to determine which is faster in your situation.

(5) Avoid usage of “OR”.

(6) For discrete lists of values, use the “IN”operator,(e.g. “WHERE city in (‘New
York’, ‘Sydney’))” instead of “WHERE city = ‘New York’ OR city = ‘Sydney’”.

(7) The SELECT statement follows these rules:

• Keywords are left justified.
• Alias table names will be used to prefix every selected column.
• In the WHERE clause, list join expressions before restrictions.

(8) Where the select statement does not fit on a single line, align the columns
from the various lines as in the following excerpt of code.

SQL Example - SELECT Statement

SELECT e.emp_id, e.emp_nm, e.city_nm, d.dept_nm

FROM emp e, dept d

WHERE e.dept_id = d.dept_id;

(9) The UPDATE statement follows these rules:

• Keywords are left justified.
• First line is “UPDATE tablename”
• Next lines specify updated columns and their values
• Final lines are the WHERE clause

(10) The following excerpt of source code exhibits the above rules:

SQL Example - Update Statement

UPDATE emp

SET job_desc = \//,

City_nm = ’Sterling’

WHERE emp_nm = ’JOE’;

(11) The DELETE statement follows these rules:

• Keywords are left justified
• First line is “DELETE FROM tablename”

(12) The following excerpt of source code table exhibits the above rules:

SQL Example - DELETE Statement

DELETE FROM emp

WHERE city_nm = ’Sterling’;

page 50 2.5 Systems Development

2.5.3.5.11.4 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(13) User parentheses rather than the implicit SQL precedence rules for logical
operators in a WHERE clause. Consider the following excerpts of source code,
the first excerpt is incorrect, the second excerpt is correct.

SQL Example - Incorrect Use of WHERE Clause

Incorrect Use of Where clause

SELECT COUNT(*)

FROM emp

WHERE job_desc LIKE ’widget%’

AND name LIKE ’J%’

OR city = ’Sterling’;

SQL Example - correct Use of WHERE Clause

Correct Use of Where clause

SELECT COUNT(*)

FROM emp

WHERE (job_desc LIKE ’widget%’ AND name LIKE ’J%’)

OR city = ’Sterling’;

(14) For further information refer to the Enterprise Standards Profile (ESP) Attach-
ment 1 Enterprise Data Standards and Guidelines.

2.5.3.5.12
(07-10-2020)
Whitespace

(1) Use vertical and horizontal whitespace judiciously to make the program more
readable.

(2) Ensure that indentation and spacing reflect the block structure of the code.

2.5.3.5.12.1
(07-10-2020)
Vertical Spacing of
Conditional Operators
on Separate Lines

(1) Split a long string of conditional operators onto separate lines. For example,
consider the following excerpt.

C Example - Conditional Operators’ Spacing

Example of Conditional Operators’ Spacing

if (foo->next == NULL

&& total_count < needed

&& needed <= MAXLLOT

&& ServerActive(current -input))

{

...

}

Programming and Source Code Standards 2.5.3 page 51

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.5.12.1

(2) Similarly, split elaborate “for” loops onto different lines.

C Example - For Loops

Example For Loops

for (curr = *listp, trail = pList;

curr != NULL;

trail = &(curr->next), curr = curr->next) {

DoSomething();

DoAnotherSomething();

}

2.5.3.5.12.2
(01-01-2004)
C Spacing for
Parentheses

(1) Do not separate keywords that are followed by expressions in parentheses
from the left parenthesis.

(2) Put blanks after commas in argument lists to help separate the arguments
visually.

2.5.3.5.13
(07-10-2020)
C Portability

(1) Portability for high-level programming represents the usability of the same
software in different computer environments. The only changes would be the
inclusion of possibly different header files, and the use of different compiler
flags. The header files will contain #defines and typedefs that may vary from
machine to machine.

(2) For an application to be considered portable it must have the capability of
moving across environments, not just across platforms. This environment can
consist of: new machine/hardware, different operating system, different
compiler, software interfaces, or any combination of these.

(3) Writing code in C does not guarantee portability. The desired target platform
must have a working C compiler available. To avoid writing C code that is non-
portable be aware of the following:

• Avoid making assumptions about integers and pointers.
• Avoid making assumptions about sizes of any data types, other than

character.
• Avoid making assumptions about how data is aligned in memory, and

within structure.
• Avoid making assumptions about how data is packed within structure.
• Avoid making assumptions about byte ordering.
• Avoid making assumptions about the size of a pointer, or that the

pointer is the same size as an int.
• Avoid making assumptions that software will always be executed on the

machine for which it is originally designed.
• C randomly seems to work in one environment, but perform unreliably in

another environment.
• The size of different data types may vary from platform to platform.
• C uses a non-standard complier extension, and may not be available on

all compiler implementations.

page 52 2.5 Systems Development

2.5.3.5.12.2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

• C uses a non-standard library extension, which may not be available on
all platforms.

2.5.3.5.13.1
(07-10-2020)
C Machine-Dependent
Code Placement

(1) The “#ifdef ”and “#ifndef” directives have the same effect as the “#if ”directive
when it is used with the defined operator.

(2) Place all machine-dependent code in a separate file from all machine-
independent code.

(3) Machine-dependent code must use “#ifdef” so that an informative error
message will result if the code is compiled on a machine other than for which it
is designed.

2.5.3.5.13.2
(07-10-2020)
C Machine-Dependent
Code Usage

(1) Only write machine-dependent code when necessary.

(2) Even if, for example, a particular piece of hardware requires that a machine-
dependent routine be written, try to write any routines that support the
machine-dependent code machine-independent.

2.5.3.6
(07-10-2020)
C++ Programming
Overview

(1) C++ is a high performance Object Oriented programming language based on
C. It was developed and released by Bjarne Stroustrup in 1985, and was first
standardized in 1998. Standards were issued again during 2003, 2007 and
2011. C++ strives to be portable to avoid reliance on features that are
platform-dependent and is maintained by the International Standards Organiza-
tion (ISO) committee. C++ is widely used in embedded systems software
engineering, and is also popular with industries: federal, health care, finance,
and Defense.

2.5.3.6.1
(07-10-2020)
C++ Scope

(1) This subsection provides establishes controls to ensure coding of C++
programs are reliable, maintainable and portable whether developed by IRS or
outside vendors. These standards apply to all C++ programming for any
project however, these standards and guidelines do not apply to source code
that is generated by a tool (such as a Graphical User Interface (GUI) builder),
or purchased as pre-existing software from a third party.

2.5.3.6.2
(07-10-2020)
C++ Classes

(1) Classes are a very significant part of your C++ programs. Classes are where
most of the processing in your programs occurs. Classes are also one of the
C++ constructs where you have choices such as different types of constructors
and destructors or different types of operators and assignments. The following
standards will help you in writing good C++ class code.

2.5.3.6.2.1
(07-10-2020)
C++ Class Declaration

(1) All classes must declare an assignment operator.

(2) Headers files must not contain more than one class definition.

(3) Header files must not declare variables other than class member data.

(4) Class names must be unique irrespective of case in any namespace including
the IRS global namespace.

(5) Class member data must have a trailing “_” appended to their variable name,
to distinguish them from local variables within member functions. No other
variables must be named with a trailing underscore.

Programming and Source Code Standards 2.5.3 page 53

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.6.2.1

(6) Class declarations must be made using the following order:

a. Friend declarations
b. Public members
c. Protected members
d. Private members

C++ Example - Class Declaration

Example:of C++ Class Declaration

class C // correct access order { public: // ... protected: // ... private: //
... };

(7) Within the public, protected and private sections of the class declaration the
following order must be followed:

a. Type declarations
b. Data members
c. Constructors
d. Destructors
e. Mutators
f. Accessors

(8) The name of the class definition header file must match the name of the class
implementation file.

2.5.3.6.2.2
(07-10-2020)
C++ Constructors and
Destructors

(1) Constructors are used to allocate memory (if needed) and has special class
functions that performs initialization of every object. The Compiler will call the
Constructor whenever an object is created. The Destructor is a special
member function of a class that is executed whenever an object of its class
delete expression is applied, i.e., used to clean-up when a class object is
destroyed.

(2) All classes must declare a copy constructor if dynamic memory allocation is
involved.

(3) Classes that are meant to be instantiated only by their subclasses must have
their constructor(s) and destructor declared protected.

(4) Constructors other than the copy constructor that have only one parameter
must be declared explicitly.

(5) Classes with virtual functions and Classes with children must define a virtual
destructor.

2.5.3.6.2.3
(07-10-2020)
C++ Class Data
Initialization

(1) Data members must be initialized in the order in which they are declared.

(2) Never declare non-const public data variables. Classes must declare member
data private or protected. Always access non-const data through public access
methods.

page 54 2.5 Systems Development

2.5.3.6.2.2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.6.2.4
(07-10-2020)
C++ Class Execution

(1) A member function must never return a reference or a pointer to a local
variable. This will result in a pointer referencing a variable that has gone out of
scope when the function returns.

(2) A member function that does not modify member data must be declared const.

(3) A public member function must never return a non-const reference or pointer
to member data.

(4) A public member function must never return a non-const reference or pointer
to data outside an object, unless the object shares the data with other objects.

(5) No member functions must be implemented within the class header declara-
tion. The only exceptions are accessors and mutators (gets and sets).

(6) Data must not to be modified by const member functions if the behavior of an
object is dependent on data outside the object.

(7) Avoid overloading on a pointer type.

(8) An assignment operator must return a reference to the assigning object (as the
assignment operator returns the left hand side (LHS)). Non-const reference is
consistent with the behavior of built-in types.

(9) Assignment to self must be checked by adding the check at the beginning of
the assignment method when overloading the assignment operator.

2.5.3.6.2.5
(07-10-2020)
C++ Inheritance

(1) Inheritance must not be used for parts-of relations. Use template classes for
parts-of relations.

(2) Use inheritance to implement a generalization to specialization (kind of) rela-
tionships.

(3) Inherited non-virtual member functions must not be overridden.

2.5.3.6.2.6
(07-10-2020)
C++ Initialization

(1) Uninitialized data present in variables, objects, etc., have led to many
problems. Often the problems manifest themselves as the very difficult “unable
to reproduce” kind of problem at test time since the behavior of programs is
dependent on the content of unitialized variables, which may or may not
change with every execution.

2.5.3.6.2.6.1
(07-10-2020)
C++ Initialization of
Variables

(1) Initialize all static variables explicitly.

(2) Always initialize object instance variables of all types.

(3) Every variable that is declared must be initialized before it is used.

2.5.3.6.2.6.2
(07-10-2020)
C++ Initialization of
Classes

(1) Use constructor initializer lists to ensure that every instance variable in a class
has a defined value.

(2) When allocating objects, ensure that all pointers to the objects are initialized
via an initializer list or within the body of the constructor.

(3) Classes that allocate dynamic storage must define a destructor that releases
that storage.

Programming and Source Code Standards 2.5.3 page 55

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.6.2.6.2

(4) After deleting the object in a destructor, set the pointer to NULL.

2.5.3.6.3
(04-28-2006)
Variables Scope

(1) Header files must use forward declarations instead of including header file(s).

(2) Global variables including using the C style extern declaration must not be
used unless the need is clearly documented and described for maintainers.
Use namespaces to declare broad scope variables.

(3) File scope and static variables must be defined using the unnamed
namespace.

(4) Names occurring in close proximity to the current scope, including an enclosed
scope, must not be redefined.

(5) Do not write code that is dependent on the lifetime of a temporary variable.

2.5.3.6.4
(04-28-2006)
Data Types

(1) A const must never be converted to a non-const, except when handling an
exception.

(2) Use struct when a user-defined type contains only data. Use classes when a
user-defined type contains data and code that processes the data.

(3) Predefined types must not be redefined.

(4) Do not define boolean types. The predefined boolean values “true” and “false”
must be used.

(5) Do not declare the structure type and its associated variable in the same
statement. Instead, declare the structure type first, and then declare a variable
of that type.

(6) Use the const type qualifier to identify data that should not change during
execution. The compiler will flag attempts to change const variables, which
aids debugging.

(7) The size of an array must be declared with an enum constant or const. This
makes modifying the size of an array easier, and is more meaningful to the
reader.

(8) Do not use the volatile qualifier. The purpose of volatile is to suppress optimi-
zation that can “optimize out” low level access to hardware.

(9) The use of numeric values (magic numbers) in code must be avoided. Use
descriptive constants instead, with the exception that the numbers 0 and 1 are
permitted if their use is self-explanatory.

2.5.3.6.5
(04-28-2006)
Conditional Constructs

(1) Logical expressions of the type if(test) or if(!test) must not be used when test is
a pointer, or the test is the return of a function which returns a non-boolean
value.

(2) The “?:” operators must not be used.

(3) A break statement must terminate the code following each case label.

(4) The flow control primitives if, else, while, for and do must be followed by a
block, even if it is an empty block.

page 56 2.5 Systems Development

2.5.3.6.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(5) The switch statement must always utilize the default statement.

(6) For boolean expressions (’if’, ’for’, ’while’, and ’do’) involving non-boolean
values, always use an explicit test of equality or non-equality.

(7) Avoid conditional expressions that always have the same result.

2.5.3.6.6
(07-10-2020)
File Prologs

(1) A file prolog must be used at the beginning of all source code files (header,
implementation and main program files), appearing as the first item of the file.
The following section provide the required prologs for C++ header and imple-
mentation files (including main programs). The following file naming convention
must be used:

C++ Example - File Prolog

File Type File Name/Suffix

C++ Header file .h

C++ Implementation file (non-
main)

.cpp

C++ Implementation file (main) main.cpp

2.5.3.6.6.1
(04-28-2006)
File Size and Structure

(1) This subsection cites standards for File Size and Structure.

2.5.3.6.6.1.1
(04-28-2006)
File Size

(1) Unless precluded by the system or project requirements, C++ classes must
define class member functions for a single class in a single file (i.e., one .cpp
file per class, defining all methods for that class).

2.5.3.6.6.1.2
(04-28-2006)
File Structure

(1) Developers must declare classes, data structures, layouts, functions, variables,
and constants in a header file named classname.h.

(2) The implementation of class methods, functions, and definition of non-static
storage variables for each header file must be located in a corresponding
classname.cpp file.

2.5.3.6.6.2
(07-10-2020)
C++ Name Conventions

(1) While such names may be permitted by C++ standard and supported by
compilers, names that very solely by case tend to create readability problems
for the maintenance programmer.

2.5.3.6.6.2.1
(07-10-2020)
C++ General Naming
Conventions

(1) Do not use names that vary solely by case.

(2) Do not use typedef to emphasize distinct numeric categories. Use a class defi-
nition instead.

(3) C++ names for all constructs such as classes, functions, variables, etc., must
use the intercap convention. Intercap runs all words of a descriptive name
together without underscores. An exception is made for names for constants

(4) The following must use the Capital form:

Programming and Source Code Standards 2.5.3 page 57

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.6.6.2.1

a. Classes and Structures (nominal Classes)
b. Enum tagnames

2.5.3.6.6.2.1.1
(07-10-2020)
C++ Identifiers

(1) Identifiers must adhere to the conventions for ANSI standard C++.

(2) Variable and function identifiers must use the normal form of the intercap
notation. That is, the names of variables and functions must begin with a
lowercase letter.

(3) Do not use single variable names unless it is an index in a loop.

2.5.3.6.6.2.1.2
(07-10-2020)
C++ Functions and
Parameter

(1) The names of formal arguments to functions must be specified and must be
the same both in the function declaration and in the function definition.

2.5.3.6.6.2.1.3
(07-10-2020)
C++ Constants

(1) Define constants using fully capitalized words separated by underscore.

(2) Define constants using const or enum. Do not use #define.

2.5.3.6.7
(07-10-2020)
C++ Formatting

(1) The IRS C++ standard indentation level is defined as 4 spaces; the program-
mer must follow proper indentations to ensure readability and consistency of
the C++ source code.

(2) Block statements must be indented one indentation level to show scope and
structural coherence.

2.5.3.6.7.1
(07-10-2020)
C++ Indentation

(1) Indent the continued part of a statement at least one indentation level beyond
the start of the statement.

(2) Indentation must be performed using spaces instead of tab characters.

(3) Indentation must be consistent throughout all source files.

2.5.3.6.7.2
(07-10-2020)
C++ Spacing

(1) The ’*’ and ’&’ must be directly connected with the type names in declarations
and definitions. I.e., no space must be placed between the ’*’ or ’&’ and the
type names in declarations and definitions.

(2) There must be no spaces between a function name and the left parentheses.

2.5.3.6.7.3
(07-10-2020)
Grouping

(1) Begin each statement on a separate line.

(2) Limit the length of source statements so that complete source statements are
visible on the screen without having to scroll right and left repeatedly.

(3) Braces (“{}”) that enclose a block must be placed in the same column, on
separate lines directly before and after the block.

2.5.3.6.7.4
(07-10-2020)
Includes

(1) Each header file must have “#include ”any other headers on which it directly
depends.

(2) The “#includes” must precede any declarations or definitions in a file.

page 58 2.5 Systems Development

2.5.3.6.6.2.1.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(3) The “#include” must not be used to insert executable code into a file or to
insert part of a class definition from an external file unless it is required by the
use of software developed externally to the project, such as commercial off-
the-shelf (COTS) products.

(4) Place“ #include” statements in the following order:

a. (If a .cpp file) the corresponding header file
b. System header files
c. COTS header files
d. Project specific header files

2.5.3.6.8
(07-10-2020)
Functions

(1) This subsection cites standards for Functions and Declarations.

2.5.3.6.8.1
(07-10-2020)
Declarations

(1) Function prototypes and external variables must be declared in a header file
(to avoid multiple declarations), not in implementation files.

2.5.3.6.8.2
(07-10-2020)
Function Parameters

(1) The return type of a function must always be stated explicitly. Functions that
do not return a value must be declared as void.

(2) Pass parameters in input, modify, and output order.

(3) Variable argument lists must not be used (ellipses notation).

(4) Where the return value from functions are stored for future use, the function
invocation must not be embedded in conditional or other function invocations.
Functions may be embedded if return value is only used within that source.

(5) Check the fault codes that may be received from library functions even if these
functions seem fool proof.

2.5.3.6.8.3
(07-10-2020)
Function Invocation,
Execution, and Return

(1) Do not depend on the order of evaluation of arguments to a function.

(2) Always return a value from main().

(3) For functions with non-void return type, all paths must have a return statement
that contains an expression of the return type.

2.5.3.6.9
(04-28-2006)
Error Handling

(1) Error notification, and memory cleanup is very important in error-handling situ-
ations. The programs must have a consistent way of handling memory
deallocations.

2.5.3.6.9.1
(07-10-2020)
General Error Handling

(1) Calling functions must check for errors reported from functions.

2.5.3.6.9.2
(04-28-2006)
Throwing Exceptions

(1) Do not throw exceptions from within destructors.

(2) Throw only objects of class type.

Programming and Source Code Standards 2.5.3 page 59

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.6.9.2

2.5.3.6.9.3
(04-28-2006)
Handling Exceptions

(1) Avoid memory leaks in exception handling code by using references in
parameter lists for exception handlers.

2.5.3.6.10
(04-28-2006)
Expressions

(1) Avoid using shift operations instead of arithmetic operations and validate
arguments to be used in shift operators.

2.5.3.6.10.1
(07-10-2020)
Expression Arithmetic

(1) Pointer arithmetic must not be used.

(2) Do not depend on the behavior of underflow or overflow.

(3) Apply unary minus to operands of signed type only.

2.5.3.6.10.2
(07-10-2020)
Type Conversions

(1) Code must not depend on implicit type conversions.

(2) The following assignments must not be used:

a. Assigning a pointer value to a non-pointer object
b. Assigning a non-pointer value to a pointer object
c. Assigning a function-pointer value to a data-pointer object
d. Assigning a data-pointer value to a function-pointer object

(3) Do not convert floating values to integral types except through use of standard
library routines.

2.5.3.6.10.3
(07-10-2020)
Pointers in Expressions

(1) A pointer must not be compared to NULL or assigned NULL without casting
the NULL to the proper type.

2.5.3.6.11
(07-10-2020)
Comments

(1) Comments in computer programming is a programmer’s readable annotation in
the source code. The purpose is to allow a better understanding of the
program’s intent for other programmers accessing the code. Create the
comments as the following;

a. Use // for in-line comments
b. Use /* and */ for block comments

2.5.3.6.12
(07-10-2020)
Memory Management

(1) If a function is returning an allocated object that the caller must free, then the
memory for the allocated object must be documented in the filename.h file as
well as in any function comment header block that is used.

(2) When memory allocated to a pointer has been deleted, a new value must be
assigned to the pointer, or the pointer must be deleted.

2.5.3.6.12.1
(04-28-2006)
Heap and Stack
Memories

(1) Do not allocate dynamic objects contained within other objects as instance
data.

(2) Class authors must provide default values for dynamic objects within other
objects and/or constructors that can be used on initializer lists.

page 60 2.5 Systems Development

2.5.3.6.9.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.6.12.2
(07-10-2020)
Memory Leaks

(1) Save the address of allocated memory to prevent orphaned allocation.

(2) Explicitly deallocate a dynamically allocated segment prior to assigning a new
value.

(3) Avoid memory leaks in exception handling code.

(4) Do not use code that can throw an exception in a destructor.

(5) Avoid memory leaks involving external components.

(6) Avoid memory leaks involving reuse of “dead” objects.

(7) Avoid memory leaks by explicitly clearing memory after use.

(8) Avoid memory leaks by unfreezing frozen stream objects.

(9) Avoid memory leaks by ensuring that you write the “Operator Delete”
whenever the “Operator New” has been written for a class.

2.5.3.6.12.3
(07-10-2020)
Buffers Overflows

(1) The size of an array must be declared with an enum constant or const. This
makes modifying the size of an array easier, and is more meaningful to the
reader.

(2) When reading array contents, check to ensure that the index does not exceed
the array size.

(3) When adding to an array, check to ensure that the size of the array can hold
the existing content in addition to the new contents to be added.

(4) Always test a pointer’s value for NULL before using it.

2.5.3.7
(07-10-2020)
Assembler Language
Code (ALC)
Programming

(1) This section of the IRM established controls to ensure coding of Assembler
Language Code (ALC) are reliable, maintainable, and portable whether
developed by IRS or outside vendors.

(2) The controls established are applicable to all ALC programs whether they are
developed by IRS government or contract employees. These guidelines apply
to all assembler programming within the IRS. System specific commands, or
technical information concerning addressing, registers, instructions and control
language with Assembler should be referenced using IRS, IBM or UNISYS
language references or standards.

2.5.3.7.1
(07-10-2020)
Assembler Language
Code (ALC) Overview

(1) Assembly languages have the same structure and set of commands as
machine languages, but enable a programmer to use names instead of
numbers. Since computers only understands (reads) bits which are comprised
of machine language code of (1 and 0),. programmers write their instructions in
symbolic language (Assembly). These symbolic source statements (source
code) must be translated into machine language object statements (object
code) before the computer can execute these instructions. An operating
system program is used for this process. This translation process is known as
assembling (assembly) the program, and serves to translate the source
module (symbolic code) into a machine language object module.

(2) ALC programming used within the IRS is developed on two mainframe
systems :

Programming and Source Code Standards 2.5.3 page 61

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.7.1

a. IBM operating system - IBM (JCL) Job Control Language
b. UNISYS - (ECL) Executive Control Language

(3) Since the processes for each system are unique with different functions, pro-
grammers should consult the specific industry standard language and
programming references for specific instructions, commands, and directives.

2.5.3.7.2
(07-10-2020)
Assembler Language
Code (ALC) Basic
Principles

(1) Assembler language is a symbolic language use to code instructions instead of
coding in machine language.

(2) Source statements are interpreted by the Assembler and output as a machine
language version of the program along with messages and listings.

(3) The Binder outputs the Assembler program into an executable module.

(4) IRS programmers use two mainframe systems and compilers to develop appli-
cations using ALC; IBM High Level Assembler (HLASM) and UNISYS Meta-
Assembler (MASM).

(5) Both systems have individual operating systems and control languages: IBM
uses JCL (Job Control Language and UNISYS uses ECL (Executive Control
Language).

(6) Each system has unique commands, instructions, directives, functions, and
macros which are included in ALC programs.

(7) Programmers write their instructions in symbolic language (Assembly) or high-
level languages such as; (COBOL, C, JAVA). These symbolic source
statements (source code) must be translated into machine language object
statements (object code) before the computer can execute these instructions.

2.5.3.7.3
(07-10-2020)
Assembler Language
Code (ALC) Program
Comments and
Documentation

(1) All programs must be commented for quick reference by other programmers.
Beginning comments must include:

a. Project and Run numbers
b. Brief description of the run
c. Programmer’s name
d. Current production assembly numbers and dates

(2) Use Title statements to print the run number on each page.

(3) Use Page ejects and spacing to separate routines.

(4) As programs are updated or changed comments should be updated.

(5) Paragraph type comments should not be on instruction statements since in-
structions could be pulled and comments left behind would be meaningless.
Place comments at the beginning of routines they describe.

(6) Constants that require periodic changes must be avoided. However, if changes
are authorized because of management approval, comments must describe
why and how they are changed.

page 62 2.5 Systems Development

2.5.3.7.2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(7) Documentation for ALC are Computer Program Books (CPB’s) for each
program which contain file specifications, run descriptions, and a Computer
Operator Handbook (COH) with instructions on all possible messages
generated during operation.

(8) Flowcharts and Pseudocode must be used to map the logical control of
sequences and steps using a “Top Down” approach to make the programs
main logic path recognizable.

(9) Relative addressing is a great way to fix programs that are running out of base
registers.

(10) Do not code RECFM, BLKSIZE, LRECL, TRTCH or DENSITY into program
DCB include these parameters in JCL to allow for flexibility. Exceptions to this
are SYSOUT.

(11) To conserve disk space use “GETMAIN” instead of “DS”, “DC”, this conserves
space by covering fewer base registers.

(12) When writing low volume local (MCC) print data sets such as program controls
use SYSOUT. However; when using SYSOUT datasets for any purpose steps
must be taken to prevent production problems at “checkpoint/restart” time. All
SYSOUT datasets must be CLOSED or not yet opened when checkpoints are
taken.

(13) Using Abend Codes – in programs where halt issues conditions exist there
should be a corresponding user abend condition.

2.5.3.7.4
(07-10-2020)
Assembler Language
Coding Conventions
(ALC)

(1) Programs should be setup so that the “Patch” routine is executed first.

(2) Write to Output (WTO’s) are to be used minimally and primarily for required
dynamic control of the executing program by operators.

(3) Unless important traffic should be routed away from the console by issuing
WTO’s with a ROUTCD=13. Providing post-execution information for review is
recommended using SYSOUT datasets instead.

(4) Hold “GETS” and “PUTS to a minimum and set them up in closed subroutines.

(5) Use closed subroutines and program modules as much as possible to enforce
straightforward logic.

(6) Use IRS Standard macros and load modules to take advantage of debugging
routines.

(7) Keep related routines together.

(8) Code programs so that the flow of execution avoids crossing an MVS page
boundary (4k of storage, covered by one base register) if your reading the
entire (IMF/BMF).

(9) Relative addressing is a great way to fix programs that are running out of base
registers.

(10) Do not code: RECFM, BLKSIZE, LRECL, TRTCH or DENSITY into program
DCB, include these parameters in JCL to allow for flexibility. Exceptions to this
are SYSOUT.

Programming and Source Code Standards 2.5.3 page 63

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.7.4

(11) To conserve disk space use “GETMAIN” instead of “DS”, “DC”, this conserves
space by covering fewer base registers.

(12) When writing low volume local (MCC) print data sets like program controls use
SYSOUT. However; when using SYSOUT datasets for any purpose, steps
must be taken to prevent production problems at “checkpoint/restart” time. All
SYSOUT datasets must be CLOSED, or not opened when checkpoints are
taken.

(13) Using Abend Codes – in programs where halt issues conditions exist there
must be a corresponding user abend condition:

a. Input File (SYSIN) Exceptions:
1) 20 - Missing Statement/Record
2) 21 - Bad Date Statement/Record
3) 22 - Bad Segment Statement/Record
4) 23 - Bad CP23 Statement/Record
5) 24 - 29 (Available)

b. Input File Exceptions:
1) 30 - Wrong Input File
2) 21 - Bad Date Statement/Record
3) 22 - Bad Segment Statement/Record
4) 23 - Bad CP23 Statement/Record
5) 24- 29 (Available)

c. Data Exception:
1) 40 - Out of Sequence Record
2) 41 - Invalid S.C./D.O./Region Code
3) 42 - Duplicate Record
4) 43 - Tax Module with no Entity
5) 44 - Invalid TIN
6) 45 - Bad Byte Count
7) 46 Bad Year Digits
8) 47 - Bad Name Control
9) 48 - TIN out of Segment Range
10) 49 - 59 (Available)

d. End Of File/End Of Job Exceptions:
1) 60 - Controls out of Balance
2) 61 - 69 (Available)

(14) At a good EOJ (End of Job) set return code to 0 (Load register 15 with zeros).

(15) Do not use the last two bytes of the Record Descriptor Word (RDW) as a user
data field. The RDW is referred to as “Byte Count” in IRS documentation, the
first two bytes hold the record length the last two are reserved by IBM.

(16) Any reserved bytes used by IBM or Unisys for their operating systems should
not be used by applications.

2.5.3.7.4.1
(07-10-2020)
Assembler Language
Code (ALC) Defining
Constants and Storage

(1) Fields are defined in Assembler using Define Constants (DC) and Define
Storage (DS) statements. These statements provide the field’s address and
length. The DC also provides an initial value for the field.

(2) Data definition statements may be used for:

a. Define a constant value used in a program.
b. Define and describe storage area receiving the input record read.

page 64 2.5 Systems Development

2.5.3.7.4.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

c. Define and describe storage area to build or modify output data.
d. Set aside and label work areas to store data for later use.

(3) Constants used are the following:

a. As Counters to count the number of records read, written or containing
errors.

b. Accumulators to track the amount of payments made to an account, or
track the total balance for a tax record.

c. Headings for printed reports.
d. Predetermined messages printed as result of an operation.

(4) The Assembler generates the formatted data in its assigned address when it
processes a DC statement. The assembler is instructed to reserve an area in
storage that:

a. Has a specified length (either explicitly stated or implied).
b. Contains data in a specified format and contains an initial value.

*Example Statement

Assembler Language Code (ALC)Example - Using DC Statement

Assembler Language Code Example

OBJECT CODE STATEMENT

C1C2C3 ALPHAS DC C’ABC’ Implied Length of
3 bytes

1C ONE DC P’1 Implied Length of 1 byte

00000C COUNTER DC PL3’0’ Explicit Length of
3 bytes

Defined Example Format

ADDONE DC 4 PL 5’ 1’ Name/Label Name OPCODE Duplication
Type Length Constant Factor (Operand Subfield) Type and Constant
(required)

(5) The Name field gives a symbolic (mnemonic) addressability to the memory
location created for the defined constant. They should be helpful, descriptive,
and unique. They are referred to as “Symbols”, or “Labels”. The following are
rules for name fields:

a. Use on instructions as well as data fields
b. It must begin in column 1
c. It can be from 1-63 characters long but is usually 8 or fewer
d. The first character must be an alphabetic or national symbol. The first

character must be (A-Z), (ALC is not case sensitive) or ($ # @).
Generally, nationals are avoided as first characters because they fre-
quently imply special meanings.

e. The remaining characters can be alphabetic, numeric, national or under-
score symbol. This includes (A-Z), (0-9), and ($ # @)

Programming and Source Code Standards 2.5.3 page 65

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.7.4.1

f. No blanks within the name. A blank in the first column indicates no name
is present. Underscores are commonly used in place of blanks.

g. A unique character combination can only be defined once. It can be used
(″referenced″) any number of times as an operand.

h. External labels, (such as the label on the SLINK macro and CSECT
statements), may not use the underscore and may not exceed eight char-
acters.

(6) Address constants (ADCONS) used in DC statements are used to place the
address of one storage area into the storage location of another. Refer to the
specific language reference for your system for examples.

(7) The constant or literal is the initial value of the data field. Constants can be
changed in ALC.

(8) Since Y2K, the standard is to use 4-digit years in all date fields.

(9) Zeros – indicate the absence of significant digits; Blanks are not Noting – they
indicate the absence of significant data.

2.5.3.7.5
(07-10-2020)
Assembler Language
Code (ALC) Standard
Macros

(1) The reference that covers IRS macros used in Assembler is Chapter 8 of the
IBM Systems Standards Manual. The subject areas covered, and brief descrip-
tions are the following:

a. Housekeeping - see table below:

ALC Example - Housekeeping Macros and Description

Macros Description

CNVDATE Performs various date conversions

DATE Provides current date in different formats

EOVCKPT Takes checkpoints on file SYSCKEOV

EQREG Equates registers to symbolic names

IRCKPT Takes checkpoints on file SYSCKPT

SLINK Provides standard linkage and save area

STATUS90 Provides status history within a tax module

b. Data Management - see table below:

ALC Example - Data Management Macros and Description

Macros Description

BLKPT Converts SSN/EIN to IDRS block pointer

Data Compression
Macros

SHRINK and EXPAND

Data Definition
Macros

IETyy, ITXyy, ENTyy, TAXyy

ETRANS98 Entity transaction search

RGTAB Translates district office

page 66 2.5 Systems Development

2.5.3.7.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Macros Description

RGTABSM Translates district office (sort/merge modules)

TRANSyy Tax module transaction search

c. Input/Output (I/O) - see table below:

ALC Example - Input/Output (I/O) Macros and Description

Macros Description

FEOV Forces End of Volume

PUT IBM macro to write records

TRUNC truncate block before FEOV

d. LARS - see table below:

ALC Example - LARS Macros and Description

Macros Description

CTL00 Issues balancing instruction message

CTL01 Issues CNTRL001 message-single value

CTL1A Issues CNTRL001 message-array of values

CNVDATE Performs various date conversions (Julian
and calendar date formatting)

e. CNVDATE: This macro performs various date conversions (Julian and
calendar date formatting)

f. REGISTER Usage: Registers 0, 1 and 15 are used during the execution
of this macro and must be saved by the user. Registers 2 - 14 may be
used in the operands, enclosed in parentheses, to point to a date field.

g. ABEND Messages: The SVC called by this macro checks for invalid
data if found the job abends with a S0C4 (register 10 should point to the
invalid data) after issuing one of following messages:

ALC Example - IBM Abend Message Descriptions

IBM Abend Message Descriptions

IGC0024A DATE PASSED IS NOT UNSIGNED CHARACTER
(REG 10). YYDDD or MMDDYY data is not
numeric characters.

IGC0024A DDD FIELD IS NOT IN 001-366 RANGE (REG
10). The DDD portion of the Julian date you
passed was not valid.

IGC0024A DD FIELD IS NOT IN 01-31 RANGE (REG 10).
The DD portion of the Calendar date you passed
was not valid.

IGC0024A DD FIELD IS NOT IN 01-31 RANGE (REG 10).
The DD portion of the Calendar date you passed
was not valid.

Programming and Source Code Standards 2.5.3 page 67

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.7.5

h. DATE: Creates the availability of the time, current date in Julian format,
and standard MMDDYY format to the programmer.

i. EOVCKPT (Similar to IRCKPT): Used to take checkpoints at logical
points and saves main storage and job queue information related to the
job step. When the checkpoint operation is complete, execution of the
program continues. It also generates a DCB for the checkpoint dataset for
the programmer. The DDNAME for the checkpoint file is SYSCKEOV.

j. EQREG: This macro generates assembler instructions to equate the
sixteen general registers to symbolic names. This allows programmers to
use the symbolic name “R#” instead of the actual register number when
coding. The symbolic names also appear in the cross-reference table of the
assembly listing and can be easily referenced.

k. SLINK: This macro provides the standard IBM linkage conventions needed
in all stand-along programs.
• Saves all registers in the calling programs save area.
• Provides an 18 word save are to be used by modules called by the
problem program.
• Register 13 points to the save area a required when calling another
module.
• Must be coded as the FIRST executable instruction in the module.
• No START statement is necessary since SLINK generates its own
START statement.
• A label is required.
• Operands are not in this macro.
• Because this macro generates its own START statement any additional
assembler statements must be coded after SLINK for example: CCW,
CNOP, CSECT, CXD, DC, DROP, DS, END, EQU, LTORG, ORG, START
and USING.

l. STATUS90(Status Search macro): Locates and makes available to the
programmer all status histories within a Tax module. This macro also
locates the latest of current status for either IMF or BMF.

m. BLKPT: This macro will convert a nine-byte zoned decimal SSN or EIN to
a block pointer for IDRS. The block pointer will be returned to register 14
at the NSI below the macro.

n. DATA DEFINITION: The macros in this category generate DSECT’s which
define the fixed portion of the IMF or BMF tax modules or entity modules.
The labels generated within the DSECT can be referred in the program as
stated below:
• IMF Entity Module - IETyy
• IMF Tax Module - ITXyy
• BMF Entity Module - ENTyy
• BMF Tax Module - TAXyy

o. ETRANS98: This macro locates and makes available to the programmer
all transaction within an entity module either IMF or BMF

p. RGTAB and RGTABSM: These macros translate any valid District Office
or Service Center code into the appropriate Region and Service Center
codes. Additionally, the RGTAB generates a 256-byte translate table which
will translate a character as posted to the IMF to an IBM EBCDIC
character. Alpha and numeric remain the same. Special characters are
translated. Refer to exhibit 1 for translations.

q. TRANSyy – (Tax Module Transaction Search): This macro locates and
makes available to the programmer all transactions within a tax module,
either IMF or BMF.

page 68 2.5 Systems Development

2.5.3.7.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

r. BODTAB and BODTABSM: Translate and validate the following:
• Universal Location Codes (ULC)
• Business Operating Divisions (BOD)
• Expanded Area Offices (MF/TIF AO), or File Location Codes (FLC) into
the appropriate BOD Area Offices (BODAO), MF/TIF AO, Service Center
codes, and the substitute (dump) FLC (when applicable).

s. IMF no longer uses 7074 – Funny Pack

2.5.3.8
(07-10-2020)
Java Programming
Language

(1) This section of the IRM provides controls to ensure Java programs are reliable,
maintainable, and portable. The controls established are applicable to all Java
programming projects whether they are developed by IRS government or
contract employees.

2.5.3.8.1
(07-10-2020)
Java Programming
Overview

(1) Java programming is a robust general-purpose computer programming
language that has the ability of running several programs, or parts of a
program in parallel. This allows a program to achieve high performance, and
throughput.

(2) Java has its own structure, syntax rules, and programming framework which is
based on the concept of object-oriented programming, and is designed to have
as few implementation dependencies as possible This allows application devel-
opers to “write once, run anywhere” (WORA) which means compiled Java
code can run on all platforms that support Java without requiring recompiling.

(3) Structurally, Java is comprised of the following:

a. Package: This is a namespace mechanism consisting of classes.
b. Classes: An user defined template from which objects are created con-

sisting of methods, variables, constants, and constructors.
c. Object: Consist of the State (attributes), this behavior is (represented by

method as an object) pertaining to the following:
• An object and response of an object with other objects.
• Identity (unique name to an object), and enables one object to interact
with other objects.

d. Java compiler: Java platform source code is written to .java files for
compiling, the compiler checks the developers code against the lan-
guage’s syntax rules them writes out the bytecode in .class files.

2.5.3.8.2
(07-10-2020)
Program Objectives

(1) Java applications are composed of one or more source files. Each source file
must be assigned to a package.

(2) A Java assembly contains one or more related packages.

(3) Java source files must follow the following structure and naming conventions
as listed below.

2.5.3.8.2.1
(07-10-2020)
Source File Structure

(1) A source file is composed of the following sections. Each section should be
separated by a blank lines and optional comment identifying each section.

a. Beginning comments
b. Package and import statements
c. Main public class declaration
d. Private class and interfaces associated to the main class

Programming and Source Code Standards 2.5.3 page 69

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.2.1

(2) A source file must contain only one public class, and the file must be named
the same as the public class name.

(3) Avoid source files exceeding 2000 lines of code.

2.5.3.8.2.1.1
(07-10-2020)
Beginning Comments

(1) Begin all source files with a C-style comment that lists the class name, version
information and date.

(2) The comment should also include a revision history when the file is modified
with a brief description of the changes made. Each revision should contain the
date saved, first initial and last name of programmer with SEID, and the
change information.

Java Programming Example - Comments

Java Programming Comment Example

/*
* ClassName
*
* Revision History
* 08/24/2013 A. Programmer (SEID1)
* Initial Release
*/

2.5.3.8.2.1.2
(07-10-2020)
Package and Import
Statements

(1) The main package and all sub-packages should be in a single Java Archive for
distribution.

(2) When building web applications, the compiled source code will be bundled with
web resources and other necessary JAR files into either a Web Archive (WAR)
or Enterprise Archive (EAR).

(3) Assemblies should only contain compiled Java source (.class file) that will be
used by calling applications. They should not include source (.java) or
compiled unit test files.

(4) Assemblies must have a manifest file (META-INF/MAINIFEST.MF) present, for
more information on Java Manifest files see https://docs.oracle.com/javase/
tutorial/deployment/jar/manifestindex.html.

(5) The first non-comment line must be the package statement.

(6) The package name is always in lowercase ASCII letters and must start with
“gov.irs.project”, or “gov.irs.program.project .”

(7) List import statements in alphabetic order.

(8) Import statements follow the package statement with a blank line.

(9) Import statements must fully qualify the class name imported. Do not use
wildcards for importing an entire package.

(10) To import static members of a class, use the static import statement.

page 70 2.5 Systems Development

2.5.3.8.2.1.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html.
https://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html.

Java Programming Example - Import Statements

Example of Import Statement

import java.awt.Canvas;
import static java.lang.Math.PI;

// NOT THIS
import java.awt.*;

(11) More information: https://docs.oracle.com/javase/tutorial/java/package/usepkgs.
html.

2.5.3.8.2.2
(07-10-2020)
Naming Conventions

(1) The following conventions should be used when determining names.

2.5.3.8.2.2.1
(07-10-2020)
Capitalization
Conventions

(1) PascalCasing capitalizes the first character of each word. Acronyms are
always in uppercase. For example, ″MyClass″ and ″URLEncoder″.

(2) CamelCasing capitalizes the first character of each word except the first.
Acronyms are always in lowercase. For example, ″propertyName″ or
″ioStream″.

(3) Below is a table of commonly used program identifiers and the appropriate
capitalization scheme.

Java Programming Examples - Capitalization

Identifier Casing Example

Package Lower package gov.irs.myproject.core;

Type Pascal public class StreamReader { ... }

Interface Pascal public interface Enumerable { ... }

Method Camel public String toString() { ... }

Field Camel private long timeElapsed = 0L;

Constant Upper public static final int MAXIMUM_DELAY =
1000;

Enum
Value

Upper public enum Color { RED, WHITE,
ROYAL_BLUE }

2.5.3.8.2.2.2
(07-10-2020)
Type Member Names

(1) Give methods a name that are verb or verb phrases.

Programming and Source Code Standards 2.5.3 page 71

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.2.2.2

https://docs.oracle.com/javase/tutorial/java/package/usepkgs.html
https://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

Java Programming Example - Method Naming Convention

Method Naming Convention Example

public class String {
public int compareTo() { }
public String[] split() { }

public String trim() { }
}

(2) When accessing attributes of a class, use the get/set method pattern.

2.5.3.8.2.2.3
(07-10-2020)
General Names

(1) Compound terms are treated as single words for capitalization purposes, refer
to Exhibit 2.5.3-18 for commonly used terms.

(2) Choose readable identifier names. For example, “Horizontal-Alignment” is more
readable than “Alignment-Horizontal”.

2.5.3.8.2.2.4
(07-10-2020)
Assembly Names

(1) The assembly, or Java archive, must be named with the top-level package
name and version number. The initial prefix, “gov.irs”, must not be included in
the assembly name, see Figure 2.5.3-23 .

Java Programming Example - Java Archive Naming Convention

Java Archive Naming Convention Example

Top Package Name Assembly (JAR file) Name

gov.irs.myprogram.myproject
(v1.2)

myprogram-myproject-1.2-
RELEASE.jar

Figure 2.5.3-23

2.5.3.8.2.2.5
(07-10-2020)
Package Names

(1) Package names must always be in lowercase.

(2) Prefix all package names with “gov.irs.”

(3) Follow the prefix with the program and project name.

(4) Subsequent portions of the package name must be grouped by related tech-
nologies.

(5) Use plural namespaces where appropriate, e.g., package gov.irs.myproject-
.models.

2.5.3.8.2.2.6
(07-10-2020)
Resource Names

(1) Resources should be obtained from one of the standard resource bundle
classes, e.g., “java.util.PropertyResourceBundle”.

(2) Bundle files should be named with a noun or noun phrase indicating the
resource bundle content, along with a suffix to indicate the language. Option-
ally include a country code and platform if differentiation is required, e.g., a
bundle that contains error messages in US English would be called “ErrorMes-
sage_en_US.properties”.

page 72 2.5 Systems Development

2.5.3.8.2.2.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(3) Bundle keys should be noun or noun phrases in PascalCase, such as “OkKey”
or “InvalidLoginError”.

(4) For more information, see https://docs.oracle.com/javase/tutorial/i18n/
resbundle/concept.html.

2.5.3.8.3
(07-10-2020)
Layout Conventions

(1) Use the Eclipse IDE defaults when possible.

a. Use a tab size of four (4) characters. Insert spaces when using the tab
key.

b. Use an indent spacing of four (4) characters.
c. Do not qualify member access with “this” keyword unless required.

Java Programming Example - Syntax Format

Syntax Format

private int mode = 1;
public int getMode() {

return mode;
}

public void setMode(int mode) {
this.mode = mode;

}

d. Prefer the primitive type (int, boolean) over the object type (Integer,
Boolean) when declaring locals, and parameters. Use the object type for
member access expressions.

Java Programming Example - Primitive Object Usage

Primitive Object Usage

public void resetMode() {
mode = Integer.MAX_VALUE;

}

e. Use one indent for block contents within a code block.

(2) Write only one declaration per line.

(3) Write only one statement per line.

Java Programming Example - Declaration and Statement Formatting

Declaration and Statement Formatting

String name = ″Billy″;
int weight = 0;
int height = 0; int bodyMass = weight / height;

// Do not do this.
char c = ’c’;
char d = c = ’x’;

Programming and Source Code Standards 2.5.3 page 73

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.3

https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

IRS Standard Java Format Example

Standard Java Format

{
public class MyIntStack

private final Linkedlist fStack;

public MyIntStack();

fStack = new LinkedList();
}
public int pop() {

return ((Integer)
fStack.removeFirst()).intValue();
}

public void push(int elem)
{
{ fStack.addFirst(new Integer(elem));
}
public boolean isEmpty() {
{ return fStack.isEmpty();
}
}

2.5.3.8.3.1
(07-10-2020)
Java Programming
Example - Wrapping
Lines

(1) When an expression will not fit on a single line, break it according to these
general principles, see table below:

• Break after a comma
• Break before an operator
• Prefer higher-level breaks to lower-level breaks
• For arithmetic statements, try to keep expressions in parentheses

together
• Align the new line with the beginning of the expression at the same

level on the previous line
• Indent four spaces if these rules lead to confusing code or to code that

is up against the right margin

(2) Line wrapping of “if” statements should generally use one indent to make it
easier to see the body of the statement.

(3) Ternary expressions can be formatting in the following way, see table below:

Java Programming Example - Ternary Expressions

Example of Ternary Expressions

var alpha = (aLongBooleanExpression)? beta : gamma;
var alpha = (aLongBooleanExpression)

? beta : gamma;

page 74 2.5 Systems Development

2.5.3.8.3.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.8.4
(07-10-2020)
Java Programming
Commenting
Conventions

(1) Ensure comments provide a code overview and additional information that is
not available in the code itself.

(2) Ensure comments contain only information that is relevant to reading and un-
derstanding the program, e.g., do not include information about how the
corresponding package is built or in what directory it resides as a comment.

(3) Providing non-trivial or non-obvious design decisions in comments is appropri-
ate, but avoid giving information that is clear from the code.

(4) Avoid any comments that are likely to become dated as the code evolves.

(5) Do not enclose comments in large boxes drawn with asterisks or other charac-
ters.

(6) Never include special characters such as those for form-feed and backspace in
comments.

2.5.3.8.4.1
(07-10-2020)
Java Programming
Single Line Comments

(1) Place comments on a separate line, not at the end of a line of code.

(2) Precede a block comment with a blank line.

(3) Begin comment text with an upper-case letter.

(4) End comment text with a period.

(5) Insert one space between the comment delimiter (“//”) and the comment text.

(6) Do not create formatted blocks of asterisks around comments.

(7) Align the comment to the current statement level.

2.5.3.8.4.2
(07-10-2020)
Java Programming
Block Comments

(1) Use block comments to provide descriptions of files, data structures, and algo-
rithms.

(2) Block comments inside a function or methods should be indented to the same
level as the code they describe.

(3) Precede a block comment with a blank line.

(4) Comment line between the start and ending block comment tags must not
have asterisks or some other identifying character. For an example, see table
below:

Programming and Source Code Standards 2.5.3 page 75

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.4.2

Java Programming Example - Block Comments

Example - Block Comments

/* On Windows machines numbers are in little-endian format.
*/

int winBytesToNumber(byte[] digits) {
/*

This must be done since Windows stores bytes with
the least significant digit first.

*/
int[] bigEndianDigits = IntStream.rangeClosed(1, digits.length)

map(i -> digits[digits.length-i])
toArray();

return bytesToNumber(bigEndianDigits);
}

(5) Place the documentation comment directly above the class or class member
requiring documentation.

(6) If information about a class, interface, variable, or method that is not appropri-
ate for documentation is required, use a block comment immediately after the
declaration. For example, place details about the implementation of a class in
such an implementation block comment following the class statement, not in
the class doc comment.

(7) Examples for use in documentation should have no more than 70 characters.

(8) Include any security-related information such as required permissions, security
related exceptions, caller sensitivity, and any security related preconditions or
postconditions.

(9) For additional information about writing documentation comments, see https://
docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html.

2.5.3.8.5
(07-10-2020)
Class Design

(1) A class is defined as a template/blueprint that describes the behavior/state of
the software object. A software object’s state is stored in fields and behavior is
shown via methods.

(2) An important class design goal is to have self-contained classes with functional
code that is more maintainable, testable, and reusable.

2.5.3.8.5.1
(07-10-2020)
Packages

(1) All classes must be assigned to a package.

(2) A package helps organize classes into logical chunks of functionality.

(3) Classes and other top-level objects that do not have an access modifier are
only visible to any other object in that package.

(4) Mark the package as sealed in the manifest when creating the JAR file for the
package.

(5) Set the security property “package.access” to prevent untrusted classes from
other class loaders to use reflection, and access the package through private
APIs.

page 76 2.5 Systems Development

2.5.3.8.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html

2.5.3.8.5.2
(07-10-2020)
Interfaces

(1) An interface contains definitions for a group of related functionalities that a
class can implement.

(2) By using interfaces, you can, for example, include behavior from multiple
sources in a class. That capability is important because the language doesn’t
support multiple inheritance of classes, see table below.

Java Interface Example

Example - Java Interface

interface Drivable {
public int MAXIMUM_SPEED = 200;

void toggleSignal(boolean state);
void setDirection(int degrees);
int getSpeed();

static String getDescription(int wheelCount) {
}

default int getRevolutionsPerMinute(int wheelSize, int speed) {
}

}

(3) Any class that implements the interface as shown above must implement the
two methods with the same signature, like a contract. That class can also be
safely recast as an instance of that interface. The implemented methods must
be “public” in scope.

(4) Interfaces may extend from one or more interfaces.

(5) In addition to empty method signatures, interfaces may also include:

• Constants – values that cannot change once defined in the interface
• Default Methods – default implementations of methods that can be over-

ridden by implementing classes
• Static methods – public methods that implementing classes cannot

override

(6) Additional information on Class interfaces can be found at https://docs.oracle.
com/javase/tutorial/java/IandI/createinterface.html

2.5.3.8.5.3
(07-10-2020)
Classes

(1) A type that is defined as a class is a reference type.

(2) Variables assigned to a reference type initially have no value, or “null”. To
assign a value to a reference type, either use the “new” operator, use a pointer
to an existing reference, or use a method that creates new reference type
instances.

Java Programming - Reference Type

Example - Reference Type

// [access modifier] - [class] - [identifier]
public class Customer
{

// Fields, properties, methods and events go here
}

Programming and Source Code Standards 2.5.3 page 77

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.5.3

https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
https://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

(3) Classes may only extend from one class, but may implement one or more in-
terfaces. If a class does not explicitly extend from another class it extends from
“java.lang.Object”.

(4) Provide the ability to create safe copies of the class. Do not implement the
interface “java.lang.Cloneable”.

(5) Do not rely on the method “Object.equals” as the sole determination that two
objects are equivalent.

(6) Always override the methods “equals()” and “hashCode()” so that two
instances of the same call are functionally equivalent.

(7) Follow the general contract when overriding the method “compareTo()”.

(8) Compare class instances and not class names.

(9) For more information see, https://docs.oracle.com/javase/tutorial/java/javaOO/
classes.html.

2.5.3.8.5.3.1
(07-10-2020)
Abstract Classes

(1) The purpose of an abstract class is to provide a common function set that
multiple derived classes can share.

(2) Abstract classes may also define abstract methods. Abstract methods must be
implemented in any class that extends from the abstract class.

(3) Use an abstract class over an interface if:

• Code must be shared over several closely related classes if unrelated
classes will implement your interface.

• Classes that extend the abstract class have many common methods or
fields, or require access modifiers other than public (such as protected
and private).

• Declare non-static or non-final fields, allowing a common set of methods
that can access, and modify the state of the object to which they
belong.

(4) Use an interface over an abstract class if the interfaces “Comparable” and
“Cloneable” are implemented by many unrelated classes.

• Behavior of a data type must be specified, but not concerned about who
implements its behavior

• Use multiple type inheritance

(5) For more information see, https://docs.oracle.com/javase/tutorial/java/IandI/
abstract.html.

2.5.3.8.5.3.2
(07-10-2020)
Sealed Classes

(1) Sealed, or “final” classes, cannot be extended like other classes.

(2) Immutable classes, like “java.lang.String”, must always be sealed.

(3) While a static class may have non-static methods, only one instance of a static
class exists. All references to a static class point to that one instance.

(4) Unlike other inner classes, static classes do not have access to members of
the enclosing class, see table below for example:

page 78 2.5 Systems Development

2.5.3.8.5.3.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

ttps://docs.oracle.com/javase/tutorial/java/javaOO/classes.html
ttps://docs.oracle.com/javase/tutorial/java/javaOO/classes.html
https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html.
https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html.

Java Programming Example - Sealed Classes

Example of Sealed Classes

class OuterClass {
public OuterClass() {

StaticNestedClass.setProperty(“color”);
}

static class StaticNestedClass {
private String prop;
void setProperty(String prop) { this.prop = prop; }
void String getProperty() { return prop; }

}
}
public static void main(String[] args)
{ OuterClass.StaticNestedClass.setProperty(″color″);
}

2.5.3.8.5.3.3
(07-10-2020)
Static Classes

(1) In object-oriented programming a static class is any class variable that is
declared with a static modifier where a single copy exists regardless of how
many instances of the class exist. Static classes also have the following char-
acteristics:

a. Static classes like sealed classes, cannot be extended.
b. A static class may only exist inside another class.
c. While a static class may have non static methods, only one instance of a

static class can exist.
d. Unlike other inner classes, static classes do not have access to members

of the enclosing class.

2.5.3.8.5.3.4
(07-10-2020)
Inner Classes

(1) Use a non-static nested class (inner class) if you require access to an
enclosing instance’s non-public fields and methods. Use a static nested class if
you don’t require this access.

(2) Inner classes, unlike static classes, have access to the private members of the
enclosing class.

(3) Use inner classes when:

• It makes sense to logically groups classes that are only used in one
place

• It increases encapsulation
• It can lead to more readable and maintainable code

(4) While permissible, avoid shadowing member variables in inner classes, see
table below:

Programming and Source Code Standards 2.5.3 page 79

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.5.3.4

Java Programming Example - Inner Classes

Example of Inner Classes

public class ShadowTest {
public int x = 0;
class FirstLevel {
public int x = 1;
void methodInFirstLevel(int x) {
System.out.println(″x = ″ + x);
System.out.println(″this.x = ″ + this.x);
System.out.println(″ShadowTest.this.x = ″ + ShadowTest.this.x);
}
}
public static void main(String... args) {
ShadowTest st = new ShadowTest();
ShadowTest.FirstLevel fl = st.new FirstLevel();
fl.methodInFirstLevel(23);
}
}
x = 23
this.x = 1
ShadowTest.this.x = 0

2.5.3.8.5.3.5
(07-10-2020)
Immutable Classes

(1) Consider making classes immutable to prevent member data from changing
after creation.

(2) Immutable classes should be sealed (marked “final”).

(3) Hide default constructors and provide only constructors that populate the class
properties.

(4) Mark property accessors as final.

(5) If a class property is a mutable reference value, create copies of those values.

2.5.3.8.5.3.6
(07-10-2020)
Objects

(1) A class definition is like a blueprint that specifies what the type can do. An
object is basically a block of memory that has been allocated and configured
according to the blueprint.

(2) Except for static classes, a program may create multiple instances of a class
that exist independently of each other.

(3) Since classes are reference types, assigning a variable to an existing
reference type instance simply assigns a pointer to that class instance.
Changes made through either reference affects both references., see Exhibit
2.5.3-2 Exhibit 2.5.3-3

(4) Classes that inherit from abstract classes must implement any members
marked as abstract. An abstract class that inherits from an abstract class does
not have to implement those abstract members from the base class.

page 80 2.5 Systems Development

2.5.3.8.5.3.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(5) An object can be recast to any of the object’s base classes. The recast object
will no longer have access to the derived classes members. If recasting an
object to a derived class, the class must be explicitly specified in the assign-
ment. If the recast is invalid, a runtime exception of
“java.lang.ClassCastException” is thrown.

a. Point pt = new Point
b. Object o = pt;
c. Point pt2 = (Point)o

(6) If an object is recast to a base class, the actual class instance is used to
determine which overridden method to use.

(7) To ensure a cast is valid, wrap any explicit casts using the “instanceof” check.

(8) For more information, see https://docs.oracle.com/javase/tutorial/java/IandI/
subclasses.html.

2.5.3.8.5.3.7
(07-10-2020)
Class Access Modifiers

(1) Top level classes may only be accessible by other classes within the same
package (no modifier), or available outside of the package (“public” modifier).

(2) Inner classes have the same set of permissions as other members of a class:
“public”, “protected”, “private”, or package-access permission.

(3) For more information, see https://docs.oracle.com/javase/tutorial/java/javaOO/
accesscontrol.html.

2.5.3.8.5.3.8
(07-10-2020)
Fields

(1) A field is a variable that is declared directly in a class. Use fields when data is
shared between methods and must be available beyond the lifecycle of a
single method.

(2) A class can have fields that are unique for each instance of the class or
shared between all instances (“static”).

(3) Unique fields should only have “private” or “protected” scope. To access or
modify a field outside of the class hierarchy, use “get” and “set” methods.

(4) While a field with “protected” scope is visible to all classes within the same
package, do not modify that field directly except from derived classes. Create
protected get/set methods so derived classes can modify the field if necessary.

(5) To make a field read only, add the modifier “final” to the field. There is no re-
striction to the initial assignment: it may be a constant or use a “new”
statement to create a new instance, see table below..

Java Programming Example - Creating a Read-Only Field

Java Programming - Example of Making a Field Read-Only

class Animal {
private String name;
protected int number;
final Animal defaultAnimal = new Dog();
public String getName() { return name; }
public void setName(String name) { this.name = name; }
}

Programming and Source Code Standards 2.5.3 page 81

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.5.3.8

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html.
https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html.
 https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html.
 https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html.

(6) Prevent class initialization cycles through static field assignments. If a static
field need to be assigned to a reference value, ensure the reference value
doesn’t have association with the class with the static value directly, nor indi-
rectly.

(7) When using collection maps, use only immutable types for the key parameter.

2.5.3.8.5.3.9
(07-10-2020)
Types

(1) Java is a strongly-typed language. Every field, every expression that evaluates
to a value, and every method has explicitly typed input parameters and return
value.

(2) To find detailed type information, use the method “getClass()” on instances or
the “class” property on classes.

Java Programming Example - getClass Method

Java Programming example of getClass

class instanceClass = collie.getClass();
class dogClass = Dog.class;

(3) Once a variable is assigned a type, the type cannot be changed except by
creating a new variable.

Java Programming Example - Type Assigned to Variable

Java Programming example - Type

int a = 5;
a = false; // compile-time error
boolean flag = (a > 10);

(4) Prefer using the “int” data type over “short” and “byte” for arithmetic operations
since the processor will automatically promote them to an “int” prior to perform-
ing the operation.

(5) When manipulating characters (the “char” data type), use the “int” data type
when manipulating bits of characters to avoid sign issues.

(6) When assigning a large number to a variable, consider using underscores for
readability.

Java Programming Example - Use of Underscores

Java Programming - Use of Underscores

int creditCardNumber = 5424_1234_5678_1234;
int socialSecurityNumber = 999_99_9999;
long hexNumber = 0xCAFE_BABE;

(7) For more information on Java primitives More information on Java primitives
see, https://cs.fit.edu/~ryan/java/language/java-data.html and https://docs.
oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html.

page 82 2.5 Systems Development

2.5.3.8.5.3.9 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

More information on Java primitives: https://cs.fit.edu/~ryan/java/language/java-data.html and https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html.
More information on Java primitives: https://cs.fit.edu/~ryan/java/language/java-data.html and https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html.
More information on Java primitives: https://cs.fit.edu/~ryan/java/language/java-data.html and https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html.

2.5.3.8.5.3.9.1
(07-10-2020)
Autoboxing and
Unboxing Types

(1) Autoboxing refers to the promotion of a primitive type to a reference type, for
example from “int” to “Integer”. Unboxing refers to the opposite process.

(2) Generic types require reference types as the generic type parameter. You can
add the appropriate primitive values directly and the value is automatically
promoted

Java Programming Example - Using Autoboxing Type

Autoboxing

List <Integer> intLiist = new ArrayList<>();
intList.add(42);
int addListValues(List <Integer> intList){
int sum = 0;

for (Integer item : intList) {
sum += item;
}
return sum; }
String s = “The sum is: “ + 42;

.

(3) Unboxing can occur either through method invocation or assignment, see
Figure 2.5.3-24

Java Programming Example - Unboxing Type

Java Programming Unboxing Type

int calculateResult(int value) { }

Integer intObject = 42;

int result = calculateResult(intObject);
List<Integer>: intList) = new ArrayList<>()
for (int i : intList) { }

Figure 2.5.3-24

(4) In general, use the primitive data type unless the number needs to be
converted to another number type such as “byteValue()” or working with
generic classes.

(5) Do not use equality operators (“==” and “!=”) to compare object data type
values.

(6) For more information: https://docs.oracle.com/javase/tutorial/java/data/
autoboxing.html.

2.5.3.8.5.3.9.2
(07-10-2020)
Enumeration Types

(1) An enumeration is a special data type that limits the value of a variable to a
predefined set of constants.

(2) Use an enumeration over a set of constants.

(3) Enumerations may contain additional methods and constructor parameters,
see Exhibit 2.5.3-6

Programming and Source Code Standards 2.5.3 page 83

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.5.3.9.2

https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html.
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html.

2.5.3.8.5.3.9.3
(07-10-2020)
Nullable Types

(1) The use of the “Optional” class eliminates potential null pointer exception
checking and runtime errors, making more readable code.

(2) Apply the “Optional” as return types as shown in Figure 2.5.3-27 Do not use
“Optional” as method parameters or in constructors. Consider using “Optional”
as field variables for reference types that are settable by outside callers .

(3) For more information : https://www.baeldung.com/java-optional.

Java Programming Example - Optional Class

Optional Class

import java.util.Optional;
class Account {
private Optional<String> name = Optional.empty();

public Account(String name) {
this.name = Optional.ofNullable(name);

}
public Optional getName() {
return Optional.ofNullable(name);

}
}
public class OptionalTest {

static public void main(String[] args) {
OptionalTest test = new OptionalTest();
System.out.printf(″Valid account name: [%s]″, test.getAccount-

Name(new Account(″john″)));
System.out.printf(″Null account name: [%s]″, test.getAccount-

Name(new Account(null)));
System.out.printf(″Null account: [%s]″, test.getAccountNam-

e(null));
}

public String getAccountName(Account acct) {
Optional accountOptional = Optional.ofNullable(acct);

return accountOptional.flatMap(Account::getName).orElse(″″);
}

}

Figure 2.5.3-25

page 84 2.5 Systems Development

2.5.3.8.5.3.9.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

: https://www.baeldung.com/java-optional.

Java Programming Example - Anonymous Class

Java Programming Anonymous Class

interface Greeting {
public String getMessage(String name);

}
public class AnonymousClassExample {

static public void main(String[] args) {
Greeting englishGreeting = new Greeting() {

public String getMessage(String name) {
Optional nameOptional = Optional.ofNullable(name);

return ″Hello ″ + nameOptional.orElse(″Anonymous″);
}

};
System.out.println(englishGreeting.getMessage(″Bob″));
System.out.println(englishGreeting.getMessage(null));

}

Figure 2.5.3-26

Java Programming Example - Anonymous Class Output

Anonymous Class Output

// Output
Hello Anonymous
4) Lambda expressions utilize anonymous classes that have only one
method signature, like the example above. A typical usage is applying
a lambda expression over a list.
import java.util.Arrays; import java.util.List; import java.util.Optional;
import java.util.function.Consumer;
import java.util.function.Function; i}

Figure 2.5.3-27

2.5.3.8.5.3.9.4
(07-10-2020)
Nested Classes

(1) A class may contain either inner classes or static inner classes within a class
definition.

(2) While permissible, do not create fully defined local classes within a method.

(3) It is acceptable to create anonymous classes from interfaces from within a
method. import java.util.Optional;

(4) Lambda expressions utilize anonymous classes that have only one method
signature, see Figure 2.5.3-28 and Figure 2.5.3-27 . A typical usage is applying
a lambda expression over a list. import java.util.Arrays; import java.util.List;
import java.util.Optional; import java.util.function.Consumer; import java.util-
.function.Function

Programming and Source Code Standards 2.5.3 page 85

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.5.3.9.4

Java Programming Example - Lambda Expressions Using
Anonymous Class and Output

Example of Anonymous Class

import java.util.Arrays;
import java.util.List;
import java.util.Optional;
import java.util.function.Consumer;
import java.util.function.Function;

interface Greeting {
public String getMessage(String name);

}
public class AnonymousClassExample {

static public void main(String[] args) {
Greeting englishGreeting = new Greeting() {

public String getMessage(String name) {
Optional nameOptional = Optional.ofNullable(name);

return ″Hello ″ + nameOptional.orElse(″Anonymous″);
}
};
List nameList = Arrays.asList(″Bob″, ″Sally″, null, ″Fred″);

nameList.stream().map(n -> englishGreeting.getMessa-
ge(n))

forEach(msg -> System.out.println(msg));
}

}
// Output
Hello Bob
Hello Sally
Hello Anonymous
Hello Fred

Figure 2.5.3-28

(5) Use local classes when creating more than one instance of a class, access its
constructor, or introduce a new named type to invoke additional methods later.

(6) Use anonymous classes when implementing an interface is enough, and the
instance does not have to exist outside of the method.

(7) Use lambda expressions when encapsulating a single unit of behavior that
needs to be passed to other code.

(8) Create nested classes when the inner class should be shared with other
classes, and access to local variables or method parameters is not required.

(9) Do not expose the parent class private fields though a public interface in the
inner class.

(10) For more information:https://docs.oracle.com/javase/tutorial/java/javaOO/
whentouse.html .

page 86 2.5 Systems Development

2.5.3.8.5.3.9.4 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html

2.5.3.8.5.3.9.5
(07-10-2020)
Numeric Types

(1) Detect and prevent integer overflow conditions.

(2) Do not perform bitwise and arithmetic operations on the same variable.

(3) Ensure division and remainder operations do not result in divide by zero errors.

(4) Use integer types that can fully represent the possible range of unsigned data.

(5) Do not use floating point numbers for precise computation.

(6) Do not attempt comparisons with “NaN”.

(7) Check floating point inputs for exceptional values.

(8) Do not use floating point numbers as loop counters.

(9) Do not construct “BigDecimal” objects from floating-point literals.

(10) Do not compare or inspect the string value of floating point values.

(11) Ensure conversions of numeric types to narrower types do not result in lost or
misinterpreted data.

(12) Avoid loss of precision when converting primitive integers to floating point.

(13) Use shift operators correctly.

2.5.3.8.5.3.9.6
(07-10-2020)
Generics

(1) Generics enable types (classes and interfaces) to be parameters when
defining classes, interfaces, and methods, allowing for class reuse with
different inputs.

(2) Code that uses generics instead of passing instances of “java.lang.Object”
benefit from:

• Stronger type checks at compile time
• Elimination of casts
• Enable generic algorithm implementation

(3) The most common usage of generics can be found in “java.util.Collection” and
subclasses.

(4) The generic parameter must be a reference type and not a primitive

Programming and Source Code Standards 2.5.3 page 87

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.5.3.9.6

Java Programming Example - Generic Class

Example of Generic Class

class GenericClass <T>
{ private T item;

public GenericClass(T item) { this.item = item;
}

public T getItem() { return item;
}
}
public class GenericExample {

static public void main(String[] args) {
GenericClassintExample = new GenericClass<>(15);

System.out.println(intExample.getItem() + 22);
GenericClass textExample = new GenericClass<>(″Hello″);

System.out.println(textExample.getItem() + ″ World″);
}

}
// Output

37
Hello World

Figure 2.5.3-29

(5) The most commonly used type parameter names are:

• E - Element (used extensively by the Java Collections Framework)
• K – Key
• N – Number
• T – Type
• V – Value
• S, U, V etc. - 2nd, 3rd, 4th types

(6) Use the diamond notation as shown above when instantiating a new instance
of the generic type (only specify the generic type on the left-side of the expres-
sion).

(7) Generic types may include more than one type, such as “java.util.Map”. Limit
the number of generic types in the class definition to no more than three .

(8) Generic classes may have methods that utilize a different generic parameter
than defined at the class level. The parameter must be enclosed in angle
brackets.

page 88 2.5 Systems Development

2.5.3.8.5.3.9.6 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Java Programming Example - Generic Class using Generic Parameter

Example - Generic Class

class GenericClass <T> {
private T item;

public GenericClass(T item) { this.item = item; }
public T getItem() { return item; }
public <N extends Number > void add(N number) { }
}

Figure 2.5.3-30

(9) A generic method can be restricted further by specifying that a method
parameter must optionally extend a class and implement one or more inter-
faces.

(10) A wildcard can be used in generics to specify an upper bound or lower bound.
A wildcard with no qualifier will permit any reference value, including classes
not derived from “java.lang.Object” such as “java.lang.Number” and null values.

(11) Consider applying an upper bound to generic method parameters.

(12) Consider applying a lower bound to generic method return values.

(13) When using the collection library, methods that accept an “Object” instance
should be cast to the same object type as the parameter type used to create
the collection.

(14) For more information:https://docs.oracle.com/javase/tutorial/java/generics/index.
html

2.5.3.8.6
(07-10-2020)
Statements

(1) Program actions are expressed in statements.

(2) Common types of statements include variable declaration, assigning values
through expressions, conditional statements, iteration statements, exception
handling, jump, and multithreading statements.

(3) Use only one statement per line, see figure Figure 2.5.3-31

Java Programming Example 1- Statement Use

Statement Use

// Correct Usage

counter++;
itemsRemaining--;

Figure 2.5.3-31

.

(4) Do not perform additional assignments in an assignment statement, see Figure
2.5.3-32.

Programming and Source Code Standards 2.5.3 page 89

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.6

https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html

Java Programming Example 2 - Statement Use

Correct Use of Statement

// Correct Usage

final int authnum = get();
number = ((31 * (number + 1)) * authnum) + (authnum > threshold ?
0 : -2);

// Not this

number = ((31 * ++number) * (number=get())) + (number > threshold
? 0 : -2);

Figure 2.5.3-32

2.5.3.8.6.1
(07-10-2020)
Variable Declaration

(1) Variable declaration statements consist of the variable type, name, and option-
ally an initial value.

(2) Unless the variable will be defined immediately after declaration, always
provide an initial value to the declared variable.

(3) If a method variable, declare the variable immediately prior to usage and not at
the top of the method with all the other method variables.see Figure 2.5.3-33

Java Programming Example - Declaring Variables

Declaring Variables

Optional <String> name = Optional.empty();
double area = 0.0d;

Figure 2.5.3-33

2.5.3.8.6.2
(07-10-2020)
Expressions

(1) Expressions statements may include assignment, object creation with assign-
ment, and method invocation and end with a semicolon

Java Programming Example - Using Expressions

Use of Expressions

area = Math.PI * Math.pow(radius, 2);
System.out.println(“Hello!”);
name = Optional.ofNullable(“Bob”);

Figure 2.5.3-34 .

2.5.3.8.6.3
(07-10-2020)
Conditional Statements

(1) Conditional statements allow certain blocks of code to run based on a certain
condition. Two types of structures exist: if/else and switch statements.

page 90 2.5 Systems Development

2.5.3.8.6.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(2) For “If/Else” statements, always surround the embedded statements in curly
braces.

Java Programming Example - Using Conditional Statements

Conditional Statements

if (condition) {
// statements
}
else if (condition) {
// statements
}
else {
// statements
}

Figure 2.5.3-35

(3) For “switch” statements, all potential values of the variable must be considered
in the “case” blocks.

(4) Consider always using an enumeration in a “switch” statement. If necessary,
add a static method in the enumeration to convert the non-enumerated value
to an enumerated value.

(5) A “default” block should used to catch any value not explicitly considered. A
separate “default” block should

(6) Explicitly provide a comment if one “case” block falls through to another “case”
block, Exhibit 2.5.3-9

2.5.3.8.6.4
(07-10-2020)
Iteration Statement

(1) Iteration statements are used to loop over a block of code repeatedly until the
termination condition is met. Statements in an iteration statement are executed
in order unless a jump statement is encountered.

(2) Valid jump statements include:.

• “break”: exits the iteration to the next statement outside the iteration
statement

• “continue”: goes back to the evaluation statement
• “return”: exits the function
• “throws”: throws an exception to be caught in the function or thrown

outside the function.

(3) An iteration statement may be labeled. If an iteration statement is labeled, the
“break” and “continue” statements should reference the label unless it is not
intended to exit / return to the top-level iteration statement.

Programming and Source Code Standards 2.5.3 page 91

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.6.4

Java Programming Example - Iteration Statement

Iteration

loops: for (int i = 0; i < 5; i++) {
for (int j = 0; j < 3; j++) {
System.out.printf(″[i=%d,j=%d]″, i, j);
if (i == 1) {
continue loops;
}
else if
(i == 2 && j == 1) {
break;
}
else if (i == 3 && j == 0) {
break loops;
}
}
}

// Output
[i=0,j=0][i=0,j=1][i=0,j=2]
[i=1,j=0]
[i=2,j=0][i=2,j=1]
[i=3,j=0]

(4) The “For” statement is typically used to iterate over a fixed index range. In this
form, it is composed of an initialization statement, condition statement, and
update statement.

(5) Variables declared in the initialization statement cannot be accessed outside of
the “for” statement.

(6) Readability purposes - consider doing non-trivial work inside the “for” block
instead of doing it all in the update statement, see Figure 2.5.3-36

page 92 2.5 Systems Development

2.5.3.8.6.4 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Java Programming Example 1- For Statement

For Statement

// More readable.
for (int i = 3; i > 0; i--) {
displayCounter(i);
}
private void displayCounter(int counter) {
System.out.print(counter + ″...″);
}
// Consider using a different iteration statement.
private int timeToLaunch = 3;
public void liftOff() {
for (startTime();isReady();countDown(),displayTime());
}
private void startTime() { timeToLaunch = 5; }
private boolean isReady() { return timeToLaunch > 0; }
private void countDown() { timeToLaunch--; }
private void displayTime() {
System.out.print(timeToLaunch + ″...″);
}

Figure 2.5.3-36

(7) For statements may contain more than one variable but limit the number to no
more than three (3) variables., see Figure 2.5.3-37

Java Programming Example 2- For Statement with Multiple Variables

For Statement with Multiple Variables

for (int i = 0, j = 0, k = 0; i * j * k < 100; i += 5, j += 2, k++) {
System.out.printf(″i=%d, j=%d, k=%d″, i, j, k);
}

// Output

i=0, j=0, k=0
i=5, j=2, k=1
i=10, j=4, k=2

Figure 2.5.3-37

(8) A “for” statement may also be used to iterate over a collection. In this form, it
is composed of a reference variable and a collection.

(9) When iterating over a collection, do not modify that collection, see Figure
2.5.3-38 below.

Programming and Source Code Standards 2.5.3 page 93

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.6.4

Java Programming Example 3- For Statement with Reference
Variable & Collection.

For Statement with Reference Variable and Collection.

List<String> nameList = Arrays.asList(″Bob″, ″Sally″, null, ″Fred″);
for(String s : nameList) { }

Figure 2.5.3-38

.

(10) Consider replacing iterating over a collection with a “for” statement and use a
lambda expression instead.

(11) If a statement block should run until a condition is met and does not need to
run once, use a “while” statement.

(12) Insure that the “while” statement is condition will be met. Avoid using an empty
“while” condition.

(13) If a statement block should run until a condition is met and must run once, use
a “do-while” statement.

(14) Insure that the “do-while” statement is condition will be met. Avoid using an
empty “do-while” condition., see Figure 2.5.3-39

Java Programming Example - Do While Statement

Do While Statement

int rating = 90;
do {
rating -= 5;
} while (rating > 50);

Figure 2.5.3-39

2.5.3.8.6.5
(07-10-2020)
Empty Statement

(1) The empty statement is used to indicate that a no operation should take place.

(2) Empty statements should be used sparingly since it can be easily missed
during a code walkthrough, see Figure 2.5.3-40 .

Java Programming Example - Empty Statement

Use of Empty Statement

for (;repeatUntilLimitReached(););
if (arg == “right”);

Figure 2.5.3-40

2.5.3.8.6.6
(07-10-2020)
Assertion Statement

(1) Use assertion statements in test projects only. Do not use assertions in place
of exception handling or other validation methods.

(2) Do not modify the state of any local or class variable in an assertion
statement.

page 94 2.5 Systems Development

2.5.3.8.6.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.8.7
(07-10-2020)
Expressions

(1) An expression is a sequence of one or more operands and zero or more
operators that can be evaluated to a single value, object, method, or
namespace. Expressions can consist of a literal value, a method invocation, an
operator and its operands, or a simple name. Simple names can be the name
of a variable, type member, method parameter, namespace or type.

(2) Numeric expressions may cause overflows if the value is larger than the
maximum value of the value’s type. In Java, exceeding the maximum value will
roll the value over to the minimum value, see Figure 2.5.3-41 .

Java Programming Example 1 - Using Expressions

Expressions and Output

public class ExpressionExample {
static public void main(String[] args) {
int largeNumber = Integer.MAX_VALUE - 10;
largeNumber += 20;
System.out.println(largeNumber);
}
}

// Output

-2147483639

Figure 2.5.3-41

(3) Expressions are evaluated by the rules of associativity and operator prece-
dence. For clarity, use parentheses extensively to indicate the precedence of
evaluating the expression, see Figure 2.5.3-42

Java Programming Example - Expression Rules

Expression Rules

x + y / 100 // ambiguous
(x + y) / 100 // unambiguous, recommended

Figure 2.5.3-42

(4) Do not ignore values returned by methods.

2.5.3.8.7.1
(07-10-2020)
Lambda Expressions

(1) When trying to pass functionality as an argument to another method, lambda
expressions treat functionality as a method argument, or code as data.

(2) Lambda functions have the following functionality blocks:

• Collection: one source collection to process, like a list
• Predicate: zero to many filters to apply to the collection
• Function: optional method that transforms the collection item to

something else
• Consumer: single function or code block that processes the transformed

item

(3) Consider using aggregate operations that accept lambda expressions as pa-
rameters over creating boilerplate code that iterates over the collection.

Programming and Source Code Standards 2.5.3 page 95

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.7.1

(4) Detailed walkthrough: https://docs.oracle.com/javase/tutorial/java/javaOO/
lambdaexpressions.html.

2.5.3.8.8
(07-10-2020)
Operators

(1) An operator is a program element that is applied to one or more operands in
an expression or statement.

(2) A unary operator contains a single operator and operand, e.g. y++;

(3) A binary operator, typically an assignment operation, contains the variable
being assigned and the expression that is assigned to that variable. The ex-
pression can contain one or more operands.

(4) To avoid exceptions and increase performance by skipping unnecessary com-
parisons, use “&&” or “||” instead of “&” and “|” respectively.

(5) A ternary operator contains a condition expression, followed by expression if
the condition is met and an expression if the condition is not met.

(6) If the condition expression contains a binary operator, surround the expression
in parentheses, see Figure 2.5.3-43

Java Programming Example - Using Operators

Binary Operator

int formNeeded = (filer == Filer.INDIVIDUAL) ? 1040 : 8832;

Figure 2.5.3-43

(7) For additional information: https://docs.oracle.com/javase/tutorial/java/
nutsandbolts/operators.html

2.5.3.8.9
(07-10-2020)
Member Design

(1) This section contains guidelines for designing members found in classes and
interfaces.

2.5.3.8.9.1
(07-10-2020)
Member Overloading

(1) Member overloading is the process of using the same member name for
different members that vary only by the input parameters.

(2) Overloading by parameter count makes it possible to provide simpler versions
of constructors and methods by chaining them together

(3) Overloading by parameter type makes it possible to use the same member
name for members performing identical operations on a selected set of
different types, see Figure 2.5.3-44

page 96 2.5 Systems Development

2.5.3.8.8 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html.
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html.

Java Programming Example - Member Overloading

Example of Overloading by Parameter Type

public class PrintStream {
public PrintStream(File file) {
}
public PrintStream(File file, String csn) {
}
public format(Locale l, String format, Object… args) {
}
public format(String format, Object… args) { }
}

Figure 2.5.3-44

(4) Use descriptive parameter names to indicate the default used by shorter
overloads.

(5) Avoid varying parameter names in overloads. If a parameter in one overload
represents the same input parameter in another overload, they should have
the same name.

(6) Avoid being inconsistent in parameter order in overloads.

(7) Subclasses should only override the longest overload since the shorter
overloads should simply call the longer one with default values.

(8) Do not have overloads with same type and position as other overloads but
have completely different meanings.

(9) Allow “null” to be passed for optional arguments.

(10) Constructors can either be an instance constructor or a type constructor.

2.5.3.8.9.2
(07-10-2020)
Constructor Design

(1) Constructors are the most natural way to create instances of a type. Most de-
velopers will search and try to find a constructor before looking for alternative
methods, such as factory methods.

(2) Constructors can either be an instance constructor or a type constructor.
Exhibit 2.5.3-9 and Exhibit 2.5.3-10

(3) Always provide a default (no parameter) constructor.

(4) Consider providing simple constructors containing primitive parameters for
properties that are commonly populated.

(5) Consider using a static factory method instead of a constructor if it doesn’t
seem natural to use a constructor. For example: class “java.util.Calendar”,
method “getInstance()”..

(6) Do use constructor parameters as shortcuts for setting main properties.

(7) Do use the same name for constructor properties and a property if the con-
structor simply sets the property.

Programming and Source Code Standards 2.5.3 page 97

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.2

Java Programming Example 1 - Constructor Design

Example - Constructor Design

public DesignExample(LocalDateTime instanceDate)
{ this.instanceDate = instanceDate;
}

{ return instanceDate; }

Figure 2.5.3-45

(8) Do minimal work in the constructor. This eliminates the need to throw excep-
tions when trying to create instances.

(9) If appropriate, do throw exceptions from instance constructors.

(10) Do not throw exceptions from type constructors.

(11) Instead of type constructors, consider initializing static fields when defined.

Java Programming Example 2 - Constructor Design

Constructor Design - Initializing static fields when defined.

// Do this static LocalDateTime firstDate = LocalDateTime.now();
// Instead of this
static LocalDateTime firstDate;
static {
firstDate = LocalDateTime.now();
}

Figure 2.5.3-46

(12) For sensitive classes, utilize a static method to create instances over a con-
structor. This allows for security checks to take place for an object is created.
Return null if an exception occurred during creation.

(13) Prevent the construction of sensitive classes. Pre-create instances and share
them with classes that need that instance.

(14) Do not call methods that can be overridden in a constructor.

(15) For more information: https://docs.oracle.com/javase/tutorial/java/javaOO/
constructors.html.

2.5.3.8.9.3
(07-10-2020)
Finalizer Design

(1) The “Object.finalize()” method is intended to be called just prior to an object
being claimed by the garbage collector. However, use of the “finalize” method
leads to performance issues, hangs, and deadlocks. It is completely unknown
when the garbage collector will pick up an inaccessible object.

(2) If using a pooled resource, always explicitly release the resource when finished
using the resource.

(3) For example, a database connection is needed to work over several non-
concurrent operations. Instead of creating a new connection on each call, a
connection pool can be established on instance creation / “open” method. Sub-

page 98 2.5 Systems Development

2.5.3.8.9.3 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html.
https://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html.

sequent calls to that instance use the connection pool established. When the
instance is no longer needed, call a “close” method that disposes all the con-
nections in the pool.

(4) To prevent malicious classes from implementing or overriding the method
“finalize” and obtaining sensitive information in an instance, perform a security
manager check before calling the super constructor.

2.5.3.8.9.4
(07-10-2020)
Field Design

(1) The principle of encapsulation, a cornerstone of object-orientated program-
ming, states that data stored within an object should be accessible to only that
object.

(2) Do not provide instance fields that are public or protected. Use property
methods for accessing fields.

(3) Do use public constant fields that cannot be changed.

(4) For more information https://docs.microsoft.com/en-us/dotnet/standard/design-
guidelines/field

2.5.3.8.9.5
(07-10-2020)
Property Design

(1) Java properties are accessible using the “getProperty()” and “setProperty()”
methods. For boolean properties, use “isProperty()” instead of “getProperty()”.

(2) If explicit element control is needed for a collection property, replace “setProp-
erty()” with “addItem()” and optionally “removeItem()” methods instead.

(3) If the property should not be changed after creation, require the property in the
instance constructor and only provide a “getProperty()” method.

(4) Do not make the “setProperty()” method more accessible than the “getProp-
erty()” method. For example, do not make the setter “public” and the getter
“protected”.

(5) Provide only property methods that are needed and assign them with the most
restrictive modifier permissible. Provide only property methods that are needed
and assign them with the most restrictive modifier permissible.

(6) Provide sensible default values for all properties, ensuring that the defaults do
not result in a security hole, inefficient code, or lead to null pointer exceptions.

(7) If two or more properties need to be set together, consider providing a method
that sets them at the same time instead of two individual setter methods.

(8) If a setter method throws an exception, preserve the previous value of that
property.

(9) Avoid throwing exceptions from getter methods.

(10) If necessary, collect a list of callers that can listen for property changes. When
the property changes, notify the listeners that the event occurred.

(11) Follow input validation and data sanitization rules listed below.

2.5.3.8.9.5.1
(07-10-2020)
Abstract Properties

(1) Create abstract properties where a family of classes have a common property
but the base class cannot actually implement the property, see Exhibit 2.5.3-11

Programming and Source Code Standards 2.5.3 page 99

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.5.1

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/field
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/field

2.5.3.8.9.5.2
(07-10-2020)
Constants

(1) Constants are fields set at compile time and can never be changed. Always
mark a constant value as “final”

(2) Use constants over literals for special values.

(3) Consider using an enumeration if a set of constants can be logically grouped
together.

(4) If an enumeration does not make logical sense but a set of constants could be
considered global, or potentially be associated with many classes, consider
creating a “final” class that holds all the related constants together.

(5) Constant values in interfaces are by default public, static and final.

(6) Only use immutable types, such as numbers, strings, or custom types, as
constant types, see Figure 2.5.3-46

Java Programming Example - Constants

Using Immutable Types: Numbers, Strings, or Custom Types, as
Constant Types

static final int READ_ONLY = 1;
final class PhysicalConstants {
static final public int SPEED_OF_LIGHT = 299_792_458;
// m/s static final public double GRAVITATIONAL_CONSTANT =
6.67408e-11;
// N m^2/kg^2
static final public double PLANCK_CONSTANT = 6.626_070_15e-34;
// J*s
}

Figure 2.5.3-47

2.5.3.8.9.6
(07-10-2020)
Parameter Design

(1) Parameters are primitives and reference variables that are part of a method or
constructor member.

(2) Use the least derived parameter type that provides the functionality required by
the member. For example, if a parameter consists of a list and the method
does not need to access elements by index, have the method accept a
“java.uil.Collection” instance instead.

(3) Do not use reserved parameters. Every parameter passed into a member
should be used in some way within that member.

(4) Do not have public methods that use multi-dimensional arrays as parameters.
Redesign the API to pass a collection of an object that contains a collection.

(5) Be consistent in naming parameters when overriding members or implement-
ing instance members.

(6) If a method requires two or more boolean parameters, consider using an enu-
meration value instead.

(7) Do not use boolean parameters unless it is absolutely certain that the
parameter will never need two states.

page 100 2.5 Systems Development

2.5.3.8.9.5.2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(8) Consider using boolean values for constructor parameters that are truly two-
state values and that initialize boolean properties.

(9) Never use assertions to validate method parameters.

2.5.3.8.9.6.1
(07-10-2020)
Variable Length
Parameter

(1) Members may have a single parameter that can take a variable number of
arguments. This parameter must be the last parameter in the member defini-
tion.

Java Programming Example - Variable Length Parameter

Using a Variable Length Parameter

class Polygon extends Shape {
int[] sides = new int[0];
public Polygon(int… sides)
{
this.sides = sides;
}
}
Polygon poly = new Polygon(4, 5, 12, 13);

(2) If callers will typically pass in large quantities of a particular type or always
pass in a collection of items, consider having the method simply accept a col-
lection instead of a variable length parameter.

(3) Do not use the single parameter form above if the array will be modified by the
member.

(4) Consider using a variable length parameter in a simple overload, even if a
more complex overload could not use it.

(5) Try to order parameters to make it possible to use a variable length parameter.

(6) Consider providing special overloads and code paths for calls with a small
number of arguments instead of variable length parameters when performance
is critical.

(7) Do check a variable length parameter for “null” values. Polygon poly = new
Polygon((int[])null);

2.5.3.8.9.6.2
(07-10-2020)
Event Design

(1) Events are the most commonly used form of callbacks.

(2) Two common groups of events include events raised before state changes and
events raised after state changes. Most events in the AWT are in the latter
category, such as in the class “MouseInputListener”: “mouseDragged”, and
“mouseMoved”.

(3) To create a new event:

• Create an event object
• Create a listener interface that has one or move events that could be

triggered with the event object.
• A class that holds a set of listeners that are notified when an event is

triggered

Programming and Source Code Standards 2.5.3 page 101

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.6.2

(4) If a listener interface contains several events, create a listener adapter class
that provides no-operation implementations for each event and subclasses
then override only the events that the class is interested. For example, the
interface “MouseInputListener” is implemented by the class “MouseInput-
Adapter”

(5) Use the term “raise” for event notification methods instead of “fire” or “trigger”.

(6) Consider extending the event class from “java.util.EventObject” instead of
using the base class.

(7) Make the event notification method protected for subclasses to override the
event method. Use private only when the class cannot be subclassed.

(8) Only pass in the event object into the event notification method. If additional
properties are needed, enhance the event object to contain those properties.
The parameter name should be “e”.

(9) Only pass “null” as the event object source only for static classes when the
instance object is unavailable or not important.

(10) Do not pass “null” into event properties.

(11) If the event raised is a pre-event, consider adding a mechanism that can
cancel the event from ultimately taking place.

(12) Event methods should always return “void”.

(13) The first parameter in an event should always be of type “Object” and be
named “source”.

2.5.3.8.9.7
(07-10-2020)
Methods

(1) Do not use deprecated or obsolete methods.

(2) Do not increase the accessibility when overriding methods.

2.5.3.8.9.8
(07-10-2020)
Language Guidelines

(1) Coding conventions for creating: arrays, exceptions, improve the readability of
the software, allowing engineers to understand new code more quickly and
thoroughly.

2.5.3.8.9.8.1
(07-10-2020)
Arrays

(1) Use concise syntax when initializing arrays., see Figure 2.5.3-48

Java Programming Example - Syntax Readability

Readable Code

// Preferred notation.
String[] nameArray = { ″Bill″, ″Joan″, ″Ted″ };
String[] nameArray = new String[] { ″Bill″, ″Joan″, ″Ted″ };

/ / Have to initialize each element one at a time.
String[] sizedArray = new String[5]; sizedArray[0] = “Bill”;

Figure 2.5.3-48

page 102 2.5 Systems Development

2.5.3.8.9.7 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

2.5.3.8.9.9
(07-10-2020)
Exceptions

(1) Use exception handling when execution failure occurs, disrupting the normal
flow of statements in a member. Do not return error codes.

(2) Use exceptions to separate error-handling code from regular code.

(3) Errors thrown are propagated up the call stack. If a method chooses not to
resolve the exception thrown by a statement, the method can simply throw the
exception to its caller.

(4) Exceptions can be grouped by execution failure type, such as input/output or
illegal argument errors. Avoid using general purpose exception handlers such
as “java.lang.Exception” as the sole exception handler.

(5) Checked exceptions must be caught and handled as described below.

(6) Exceptions that are external to the application that cannot be anticipated or
recovered from extend from “java.lang.Error”. Applications should not try to
catch these exceptions except to perform logging or display a notification.

(7) Exceptions that are internal to the application that cannot be anticipated or
recovered from extend from “java.lang.RuntimeException”. Consider designing
the application to eliminate the sources of these exceptions rather than simply
catching them.

(8) Do not use exceptions for the normal flow of control. By their name, exceptions
should be raised only in exceptional circumstances.

(9) When logging exceptions, always sanitize content that came from an untrusted
source.

(10) Consider another mechanism instead of exceptions if the application will throw
more than 100 exceptions per second.

(11) Document all exceptions publicly thrown in the documentation comments.

(12) Do not have public members that can turn off a thrown exception by setting a
parameter.

(13) Do not return exceptions in the return value.

(14) Consider using exception builder methods to create a new exception instance
before being sent.

(15) Avoid throwing exceptions from “finally” blocks.

(16) For more information:https://docs.oracle.com/javase/tutorial/essential/
exceptions/catchOrDeclare.html.

(17) For more information on errors More information on errors: https://docs.oracle.
com/javase/8/docs/api/index.html?java/lang/Error.html.

2.5.3.8.9.9.1
(07-10-2020)
Catching and Handling
Exceptions

(1) A “try” statement starts a block of code where exceptions may be thrown and a
corresponding set of exception handlers ends the block to capture the types of
exceptions that the block may throw.

(2) Associate exception handlers with one or more “catch” blocks that follow
directly after the “try” block. The exception type indicates exception the “catch”
block can handle.

Programming and Source Code Standards 2.5.3 page 103

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.9.1

https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html.
https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html.
More information on errors: https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/Error.html.
More information on errors: https://docs.oracle.com/javase/8/docs/api/index.html?java/lang/Error.html.

(3) Exception handlers can handle more than one type of exception that are not
related to each other by using the pipe “|” operator.

(4) Organize exception handlers from most specific to most general.

(5) Always use the first letter of the exception name parts as the exception
handler variable name.

(6) When a using a resource that is only needed in a “try” block, specify the
resource with the “try” statement to insure it is closed on exit.

(7) Optionally, the method can choose to simply pass the exception to the caller
with or without handling the exception first.

(8) Always do something with the exception, catch or throw it up to the caller, but
never both, see Figure 2.5.3-49 for more guidance.

Java Programming Example - Catching and Handling Exceptions

Catching/Throwing an Exception

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException; import java.io.InvalidClassException;
import java.io.ObjectInputStream; class Person {
private String id;
public Person(String id) {
this.id = id;
}
public String getID() { return id;
}
} public class ExceptionExample
{
static public void main(String[] args) throws Exception {
Person p = null;
try (ObjectInputStream objectStream = new ObjectInputStream(new
FileInputStream(args[0]))) {
p = (Person)objectStream.readObject();
}
catch (FileNotFoundException fnfe) {
// do something
}
catch (ClassNotFoundException|InvalidClassException se) {
// do something
}
catch (IOException ioe) {
// do something
}
}
}

Figure 2.5.3-49

(9) Never return the method “printStackTrace()” back to the client application.

(10) Never catch instances of “java.lang.Throwable”.

page 104 2.5 Systems Development

2.5.3.8.9.9.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(11) Clean up any resources not controlled in the resource section of the “try” block.

(12) Never explicitly catch “NullPointerException”. Rewrite the code to mitigate the
null condition.

2.5.3.8.9.9.2
(07-10-2020)
Throwing Exceptions

(1) Never throw an exception from the “finally” block.

(2) When creating custom exception classes, use the initial exception as a
parameter to the custom exception instance so the stack trace is not lost.

(3) Always provide context of what occurred in the exception thrown with the stack
trace information for development purposes.

(4) .Only include known, acceptable information in exception details rather than
trying to filter out the sensitive properties.

(5) Do not include file path information, account names, or home directory infor-
mation that enable hackers to guess the underlying file or data structure.

(6) Consider sanitizing the exception type name, such as “FileNotFoundExcep-
tion”.

2.5.3.8.9.9.3
(07-10-2020)
Unchecked Exception
Best Practices

(1) Don’t convert checked exceptions to unchecked (runtime) exceptions.

(2) If the method emits unchecked exceptions, such as a “NullPointerException”,
document when that will occur but do not specifically indicate that in the
method definition.

(3) Do not create exceptions that are extended classes of “java.lang.RuntimeEx-
ception”.

(4) General rule: if the caller can recover from an exception, make the method
throw a checked exception. If the caller cannot recover from an exception,
make the method throw an unchecked exception.

2.5.3.8.9.10
(07-10-2020)
Concurrency

(1) Applications can utilize multiple threads of the executing processor using con-
current programming techniques.

2.5.3.8.9.10.1
(07-10-2020)
Threads

(1) Threads are lightweight processes that enable different blocks of code to run
concurrently

(2) To directly control thread creation and management, create instances of class
“Thread” to initiate an asynchronous task..

(3) To create a thread, create a class that implements the interface “java.lang.Run-
nable” and use it to create a new “Thread” instance. Do not subclass from the
class “java.lang.Thread”, see Figure 2.5.3-50 for more guidance.

Programming and Source Code Standards 2.5.3 page 105

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.10.1

Java Programming Example - Thread Creation

Class that Implements the Interface “java.lang.Runnable” for
New Thread Instance

class HelloRunnable implements Runnable {
@Override public void run() {
System.out.println(″Hello from a thread.″);
}
}
public class ThreadExample {
static public void main(String[] args) {
Thread t = new Thread(new HelloRunnable());
t.start();
}
}

Figure 2.5.3-50

(4) A thread can be paused, or put to sleep, for certain duration. The thread will
pause for at least the specified amount of time but not guaranteed to be
precise.

(5) When a thread is interrupted, the thread should terminate and clean up any
used resources.

(6) A thread can be paused by waiting on another thread to complete by joining
them together.

(7) Use synchronized methods to prevent shared data from being modified by
multiple threads or receiving inconsistent views.

(8) Consider using synchronized blocks only when it is safe to interleave access of
the affected fields.

(9) Insure thread operations are independent of each other to avoid a deadlock
condition.

(10) Insure that threads lock resources only when necessary and promptly release
the lock to avoid starvation by other threads.

(11) If a thread must react to the action taken by another thread, do not have the
original thread react to the action taken by the other thread.

(12) Always invoke the method “wait” inside a loop that tests for the condition being
waited for. Do not assume that the interrupt was for the particular condition or
that the condition is true.

(13) Use the method “Object.notifyAll” method to notify every thread that the
resource has been updated., see Exhibit 2.5.3-13

(14) Consider defining immutable classes so that the properties of an object cannot
change once created. This eliminates the concurrency issues when working
with threads.

(15) Avoid starting a new thread with an untrusted object of type “Runnable”.

page 106 2.5 Systems Development

2.5.3.8.9.10.1 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(16) For more information about threads see, https://docs.oracle.com/javase/tutorial/
essential/concurrency/threads.html.

2.5.3.8.9.10.2
(07-10-2020)
High-Level Concurrency

(1) High-level concurrency features are located in the package “java.util.concur-
rent”.

(2) Unlike implicit lock objects in synchronized blocks, the class “Lock” allows a
thread to try to get the lock and back out if it cannot.

(3) Instead of managing threads directly, specific implementations of the interface
“Executor” determine when and how the thread is created.

(4) To process independent tasks according to the scheme “one thread per task”,
use the interface “ExecutorService” to run standard “Runnable” tasks, which do
not return a value, and “Callable” tasks which do return a value. This service
can manage the status of tasks, submit large quantity of tasks, and gracefully
shut down tasks within the executor.

(5) To schedule a task to run in the future, use the interface “ScheduledExecu-
torService”.

(6) Always shutdown an executor service when it is no longer needed.

(7) Consider creating thread pools with a finite number of threads managed by the
executor. Be sure to size the thread pool properly to optimize the pool
overhead with the number of concurrent requests expected to be received.,
see Figure 2.5.3-51

Programming and Source Code Standards 2.5.3 page 107

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.10.2

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html.
https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html.

Java Programming Example - Creating Thread Pools and Output

Thread pools with a Finite Number of Threads

import java.util.Arrays;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException; import java.util.con-

current.ExecutorService;
import java.util.concurrent.Executors;

public class ExecutorExample {
static public void main(String[] args) {

Runnable helloTask = () -> {
System.out.println(″Hello from a thread.″);

};
Callable callbackTask = () -> {

return ″Here is your sign.″;
};

ExecutorService service = Executors.newFixedThread-
Pool(10);

List > callbackList = Arrays.asList(callbackTask);
try {

service.execute(helloTask);
String result = service.invokeAny(callbackList);

System.out.println(result);
}

catch (InterruptedException e) {
}

catch (ExecutionException e) {
}

service.shutdown
}

}

// Output
Hello from a thread.
Here is your sign.

Figure 2.5.3-51

(8) Utilize “Future” instances from the executor when it is necessary to monitor or
cancel a long running task.

(9) Use “CompletableFuture” instances when the following conditions are needed:

• The task may need to be manually completed
• Further action may be needed on a “Future” result without blocking
• Need to chain or combine multiple features together
• Require exception handling

(10) Consider using the fork/join framework instead of an executor service for
breaking down a task into recursively smaller tasks and then have the results
collated.

(11) For more information on executors, seeMore information on executors: https://
www.baeldung.com/java-executor-service-tutorial.

page 108 2.5 Systems Development

2.5.3.8.9.10.2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

More information on executors: https://www.baeldung.com/java-executor-service-tutorial.
More information on executors: https://www.baeldung.com/java-executor-service-tutorial.

(12) For more information on futures and “Fork/Join” see, https://www.baeldung.
com/java-future.

(13) For more information on “Completable Futures” see, https://www.baeldung.
com/java-completablefuture.

2.5.3.8.9.11
(07-10-2020)
Native Code
Interoperability

(1) The Java Native Interface (JNI) is a gateway to allow Java code to work with
non-Java resources.

(2) Use JNI in the following situations:

• Integrate with legacy code to avoid a rewrite
• Implement functionality missing in Java libraries
• Integrate with code best written in C or C++
• Address special circumstances that must be resolved by leaving the

Java Virtual Machine

(3) When accessing fields and methods in Java objects, cache any results when
finding resource identifiers.

(4) Get or update only the parts of an array that the native method needs.

(5) Get or update as much of the array at one time.

(6) Provide all the information the native method needs to execute in method pa-
rameters.

(7) Minimize the transitions between native code and Java callbacks. This includes
structuring the data, so it exists on the correct side of the boundary.

(8) Delete local references when no longer used and not wait until the native
method call ends.

(9) If many local references are needed (more than 16), notify the JVM to optimize
the handling of local references.

(10) Only use the “JNIEnv” with the single thread to which it is assigned.

(11) Always check for exceptions after making JNI calls that can raise exceptions.

(12) Always check the return value from a JNI method and include code paths to
handle errors.

(13) For each “GetXXX” call, always call “ReleaseXXX” when the resource is no
longer required.

(14) Never make and additional JNI calls or block code running between the
“GetXXXCrtitical” and “ReleaseXXXCritical” statements.

(15) Always keep track of global references and delete them when the reference is
no longer needed.

(16) Define wrappers around native methods by making the native method call
private and use a public Java method that calls the native method.

(17) For more information see, https://www.ibm.com/developerworks/library/j-jni/
index.html. Exhibit 2.5.3-13

Programming and Source Code Standards 2.5.3 page 109

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.11

 https://www.baeldung.com/java-future
 https://www.baeldung.com/java-future
https://www.baeldung.com/java-completablefuture
https://www.baeldung.com/java-completablefuture
https://www.ibm.com/developerworks/library/j-jni/index.html.
https://www.ibm.com/developerworks/library/j-jni/index.html.

2.5.3.8.9.12
(07-10-2020)
Design for Extensibility

(1) Carefully consider how the framework can be extended over time.

(2) Always choose the least costly extensibility mechanism that meets the require-
ments. Adding more extensibility later is easier than attempting to take it away.
The sections below are organized from least costly to most costly.

2.5.3.8.9.12.1
(07-10-2020)
Unsealed Classes

(1) Consider making all new classes unsealed without protected members and
make public methods “final” to prevent overrides.

2.5.3.8.9.12.2
(07-10-2020)
Protected Members

(1) Consider using protected members for advanced customizing without exposing
features to classes outside the package or class hierarchy.

(2) Use the same defensive coding practices on protected members as public
members. This includes documentation, security, and compatibility analysis.

2.5.3.8.9.12.3
(07-10-2020)
Events and Callbacks

(1) Throw standard checked exceptions on methods when it makes sense to do
so.

(2) Throw custom checked exceptions when the callers can reasonably continue
to operate if the exception is thrown.

(3) Avoid throwing runtime exceptions and instead sanitize the input or throw a
checked exception.

(4) Consider accepting standard lambda expressions as parameters to methods to
execute custom code when useful.

(5) Consider by accepting standard lambda expressions or custom functional inter-
faces, arbitrary code is being executed, leading to potential security,
correctness, and compatibility issues, see Figure 2.5.3-52.

page 110 2.5 Systems Development

2.5.3.8.9.12 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Java Programming Example - Events and Callbacks

Events and Callbacks

class NamedEmployee {
private LocalDate loginDate = LocalDate.MIN;
private String name = ″″;
public NamedEmployee() {
}
public NamedEmployee(String name) {

this.name = name;
}
public String getName() { return name;

}
public LocalDate getLoginDate() { return loginDate; }

public void setLoginDate(LocalDate loginDate) {
this.loginDate = loginDate;
}

}
public class PassByFunction {

static public void main(String[] args) {
Map<String, LocalDate>employeeData = new HashMap<>();
employeeData.put(″Fred″, LocalDate.of(2018, 5, 4));
employeeData.put(″Sally″, LocalDate.of(2018, 10, 16));

Function<Map.Entry<String, LocalDate>, NamedEmployee> convert-
Function = (entry) _> {

NamedEmployee emp = new NamedEmployee(entry.getKey());
emp.setLoginDate(entry.getValue());

return emp;
};

PassByFunction app = new PassByFunction();
app.writeToDatabase(employeeData.entrySet(), convertFunction);
}

public <T> void writeToDatabase(Collection<T> source,
Function<T,NamedEmployee> func) {
source.stream().map(func).forEach(this::writeRecord);

}
private void writeRecord(NamedEmployee emp) {

System.out.printf(″Name=%s,Date=%s\n″, emp.getName(),
emp.getLoginDate());

}
}

// Output
Name=Sally,Date=2018-10-16
Name=Fred,Date=2018-05-04

Figure 2.5.3-52

2.5.3.8.9.12.4
(07-10-2020)
Virtual Members

(1) Overriding members, like methods, seems natural to object-orientated design
by changing the behavior of the base class.

(2) An overridden method is costly to design, test, and maintain because of the
potential impact on related methods in the base class.

Programming and Source Code Standards 2.5.3 page 111

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.12.4

(3) The contract and documentation on methods that can be overridden must be
extremely clear to subclass implementations.

(4) Non-final methods are much slower than final methods because they cannot
be optimized by the compiler.

(5) Use protected accessibility over public accessibility for methods that can be
overridden.

(6) When the public method results vary between subclasses, have the public
method call a protected method that can be overridden.

Java Programming Example - Overriding Members (Methods)

Using Protected Accessibility over Public Accessibility for
Methods Overridden

abstract public class Shape {
final public double getArea() {
return calculateArea();
}
abstract protected double calculateArea();
}
class Circle extends Shape {
private int radius = 0;
public Circle() {
}
public Circle(int radius) {
this.radius = radius;
}
final public int getRadius() { return radius; }
final public void setRadius(int radius) {
this.radius = radius;
}
@Override
protected double calculateArea() { return Math.pow(radius, 2) *
Math.PI; }
}

Figure 2.5.3-53

2.5.3.8.9.12.5
(07-10-2020)
Abstractions

(1) Abstract classes provide a contract with partial implementation details. It is
extremely difficult to design an abstraction that provides just the right amount
of functionality and no more for subclasses to use.

(2) Too many abstractions make the overall framework difficult to understand and
use. In addition, poor naming choices can lead to confusion over which
classes are abstract and which are not.

(3) Abstractions are an essential part of many architectural patterns and extremely
important for framework testing.

(4) Do not provide abstractions unless they are tested by several concrete imple-
mentations and the APIs that consume the abstractions.

page 112 2.5 Systems Development

2.5.3.8.9.12.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(5) Unless the abstract class provides significant reusability to subclasses,
consider using an interface instead.

(6) Provide reference tests for concrete implementations of abstract classes.
These tests will enable developers to test that their implementations correctly
implement the contract.

2.5.3.8.9.12.6
(07-10-2020)
Base Classes for
Implementing
Abstractions

(1) Base classes are abstract classes that extend from another base class.

(2) Base classes add complexity to the framework and increase the depth of the
inheritance hierarchy.

(3) Only create base classes that provide significant functionality from its base
class to developers using the framework and not for other framework compo-
nents. For internal framework components, delegate the functionality to an
internal implementation.

(4) Make base classes abstract even if they do not contain abstract methods to
clearly indicate the call must not be used directly.

(5) Place base classes in a separate namespace from the mainline scenario
types.

(6) Be aware that secure subclasses may become unsecure by adding new func-
tionality to base classes, or default interface methods.

2.5.3.8.9.12.7
(07-10-2020)
Sealing

(1) Consider making a class final to prevent malicious subclassing or for the
following reasons:

• The class contains only static methods and cannot be instantiated.
• The class stored security-sensitive secrets in inherited protected

members.
• The class contains many overridable members, and the cost of sealing

them individually is an expensive operation.

(2) Do not declare protected or overridable members in sealed classes since no
additional extension classes can exist.

(3) Consider sealing overridden members.

2.5.3.8.9.13
(07-10-2020)
Secure Coding
Guidelines

(1) The following guidance is for the standard edition (Java SE).

(2) For more information on secure coding see,: https://www.oracle.com/
technetwork/java/seccodeguide-139067.html and https://wiki.sei.cmu.edu/
confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java.

2.5.3.8.9.13.1
(07-10-2020)
Fundamentals

(1) Design and write code that does not require clever logic to see it is safe.

(2) Insure that only vetted classes are used in the framework design. Using a
subclass from an unknown source may contain malicious code that adds final-
izers or overrides random methods.

(3) Inspect any method or class that utilizes the class “SecurityManager”.

(4) Refactor any duplicated code or data so that changes are uniformly accessed
and modified throughout the application.

Programming and Source Code Standards 2.5.3 page 113

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.13.1

https://www.oracle.com/technetwork/java/seccodeguide-139067.html.
https://www.oracle.com/technetwork/java/seccodeguide-139067.html.
Additional reference: https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java.
Additional reference: https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java.

(5) Restrict privileges of the Java Virtual Machine by assigning policy files that
restrict permissions. Avoid running applications with all permissions.

(6) Sanitize and validate all data crossing a trust boundary. For example, data
contained in a web request must be validated before business logic is applied.
Permanent storage, like a database, must validate that the business layer data
is correct before updating the storage facility.

(7) Minimize the number of security checks to “SecurityManager” by getting a set
of permissions only at key points and using that information when needed.

(8) Classes, packages, and modules should only contain a coherent set of
behaviors and nothing more.

(9) Test all code by performing: peer reviews, unit testing, and regression testing.
This will ensure all application defects, design, and security flaws are mitigated

2.5.3.8.9.13.2
(07-10-2020)
Denial of Service

(1) Be cautious of the following:

• Large vector images such as SVG and font files
• Creating object graphs from a text or binary streams
• Highly compressed ZIP files
• XML files that dynamically grow on entity expansion
• Inserting large numbers of keys in a map with the same hashcode
• Regular expressions that may have catastrophic backtracking
• XPath expressions that consume arbitrary amounts of processor time
• Deserializing malicious data
• Integer overflow errors
• Detailed log entries that produce excessive output
• Parsing corner case data that results in infinite loops

(2) Always release resources when they are no longer needed. Consider using
“execute around method” and “try with resource” idioms for handling resources.
Use the standard resource and acquisition and release pattern for resources
that cannot use either idiom,see Figure 2.5.3-54

Java Programming Example - Releasing Resources

Using “Try with Resource”

public R locked(Action action) {
lock.lock();
try {
return action.run();
finally {

lock.unlock();
}

}

Figure 2.5.3-54

(3) If outputting data to a stream, always flush the buffer before closing the
stream.

(4) Insure that accessing a resource cannot indefinitely block or uses untrusted
code that prevents the cleanup code from executing.

page 114 2.5 Systems Development

2.5.3.8.9.13.2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

(5) Consider using the methods in the class “java.util.Math” for arithmetic calcula-
tions if there is a possibility for integer overflow errors.

2.5.3.8.9.13.3
(07-10-2020)
Confidential Information

(1) Do not log sensitive information, such as social security numbers or
passwords. This includes working with low-level libraries that utilize generic
text. Consider using only one-way hashes for password checks and flushing
object content directly rather than waiting for the garbage collector to dispose
of the object.

2.5.3.8.9.13.4
(07-10-2020)
Input Validation and
Data Sanitization

(1) Validate return values from called methods before using them.

(2) Do not expose collections that can be modified outside of the class without first
providing either a copy or making the collection unmodifiable.

(3) Validate all arguments passed to public, protected, or explicitly implemented
members. If an argument is not valid, throw an appropriate runtime exception
https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
such as “IndexOutOfBoundsException” or “IllegalArgumentException”.

(4) Be aware that mutable object content may change while using the object. This
is especially true in multi-threaded situations, but even in normal processing
the object properties may change during the lifecycle of a method.

(5) Always validate input from untrusted sources. This includes method arguments
and external streams.

(6) Always make a defensive copy of reference values before performing validat-
ing input.

(7) Consider making copies of internal reference properties prior to sending to
external methods.

(8) Normalize string values and do not form strings with partial characters

(9) Canonicalize path names and use a safe subset of ASCII characters before
validating them.

(10) Safely extract files from a compressed source.

(11) Exclude unsanitized user input from format strings.

(12) Sanitize untrusted data passed to the method “Runtime.exec()” and included in
regular expressions

(13) If dealing with locale-dependent data, specify an appropriate locate during
comparison.

(14) Use compatible character encoding on both sides of file or network input/
output.

(15) When working with web forms, never trust the content of hidden fields.

(16) If a method accepts a collection, validate both the collection and elements
within the collection are not “null”.

Programming and Source Code Standards 2.5.3 page 115

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.13.4

https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

2.5.3.8.9.13.5
(07-10-2020)
Injection and Inclusion

(1) Parse data that requires a certain input and perform only limited correction
such as converting quotation marks to an acceptable pattern. In all other
cases, reject the data if it does not meet the input requirements before parsing.

(2) Use well-tested libraries instead of ad-hoc code. Use the standard library for
creating XML or JSON files instead of raw text. Create classes that only
handle formatting of unusual formats.

(3) Avoid dynamic SQL statements. When accessing a database using JDBC,
always use “java.sql.PreparedStatement” and “java.sql.CallableStatement”.

(4) Consider using a well-tested library to output HTML and XML to clients from
untrusted data sources such as input from an HTML form.

(5) Avoid entering or expecting untrusted data on the command line.

(6) Restrict XML inclusion by preventing local or intranet files from being added to
an XML file.

(7) Take care when processing BMP files by restricting privileges to read included
file references.

(8) Disable HTML functionality in Swing components.

(9) Take care interpreting untrusted code. Some examples include:

• Interaction between browser JavaScript and native code
• XSLT interpreter runs with extensions to call Java code
• Long Term Persistence of JavaBeans components supports execution of

Java statements
• Playing sounds
• Remote Method Invocation may allow loading of remote cade specified

by the remote connection.
• LDAP allows loading of remote code in a server response.
• SQL implementations allow execution of code with effects outside of the

database

(10) Prevent injection of exceptional floating-point values. Use the “Double.isNan”
and “Double.isInfinite” methods to check if a number is valid.

2.5.3.8.9.13.6
(07-10-2020)
Accessibility and
Extensibility

(1) Isolate unrelated code by keeping code from different origins separated.

(2) Limit the exposure of ClassLoader instances.

(3) Purge sensitive information from exceptions. For example, if a method calls
java.io.FileInputStream constructor to read an underling configuration file and
that file is not present, a java.io.FileNotFoundException containing the file path
is thrown.for more information see, https://www.oracle.com/technetwork/java/
seccodeguide-139067.html

2.5.3.8.9.13.7
(07-10-2020)
Serialization and
Deserialization

(1) Avoid deserializing untrusted data.

(2) Avoid serializing security sensitive classes.

(3) Do not include sensitive data during serialization.

(4) Follow the same guidance for object constructors when deserializing data.

page 116 2.5 Systems Development

2.5.3.8.9.13.5 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

https://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://www.oracle.com/technetwork/java/seccodeguide-139067.html

(5) Duplicate the security manager checks enforced during serialization and dese-
rialization.

(6) Consider applying security manager limitations if serializing and deserializing
classes.

2.5.3.8.9.13.8
(07-10-2020)
Access Control

(1) This section covers utilizing the security manager feature, pertaining to the list
below.

• Understand how permissions are checked.
• Properly transfer context when using callback methods used in security-

sensitive classes.
• Understand how to safely invoke and restrict privileges in the method

“doPrivileged”.
• Do not cache the result of privileged operations.
• Consider carefully the security ramifications of using reflection on

untrusted objects.
• Methods that perform a security check must be declared “private” or

“final”.

2.5.3.8.9.13.9
(07-10-2020)
Defensive Use of the
Java Native Interface
(JNI)

(1) Only use JNI when necessary.

(2) Be aware of the C/C++ threat model.

(3) Expect that JNI code can violate visibility and isolation rules.

(4) Secure the JNI implementation from the Java side.

(5) Properly test JNI code for concurrent access.

(6) Secure library loading.

(7) Perform input validation at the language boundary.

(8) Expect and handle exceptions when calling JNI into Java.

(9) Follow secure development practices for the native target platform.

(10) Ensure any bundled JVMs and JREs meet Java’s secure baselines.

Programming and Source Code Standards 2.5.3 page 117

Cat. No. 33498W (07-10-2020) Internal Revenue Manual 2.5.3.8.9.13.9

page 118 2.5 Systems Development

This Page Intentionally Left Blank

2.5.3.8.9.13.9 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-1 (07-10-2020)
Java Programming- Example of Wrapping Lines

Example of Wrapping Lines

/ comma break
void computeResult(String parameter1, String parameter2,
String parameter3, String parameter4)
throws InvalidOperationException, NumberFormatException,
IllegalArgumentException { }
// operator break
int specialCharacteristic = longOperand1 + longOperand2
longOperand3 + longOperand4;
// leveled break
String accountName = accountPrefix + “ “
+ getFullName(accountFirstName, accountLastName)
+ “ “ + accountSuffix;
int numericResult = longName1 + longName2
* (longName3 – longName4 + longName5)
/ longName6;
// indent four space rule
void aVeryLongMethodNameThatIsHardToCompress(String parameter1,
String parameter2)
throws IOException {
}

Programming and Source Code Standards 2.5.3 page 119

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-1

Exhibit 2.5.3-2 (07-10-2020)
Java Programming Example of Objects

Comparison of public class ObjectTest and class Point

public class ObjectTest {
public static void main(String[] args) {
Point p1 = new Point(4, 6);
Point p2 = new Point(7, 9);
Point p3 = p2; System.out.println(″Before change:″);
System.out.printf(″Point 1 = (%d,%d)″, p1.getX(), p1.getY());
System.out.printf(″Point 2 = (%d,%d)″, p2.getX(), p2.getY());
System.out.printf(″Point 3 = (%d,%d)″, p3.getX(), p3.getY());
p3.setX(10);
p3.setY(20);
System.out.println(″After change:″);
System.out.printf(″Point 1 = (%d,%d)″, p1.getX(), p1.getY());
System.out.printf(″Point 2 = (%d,%d)″, p2.getX(), p2.getY());
System.out.printf(″Point 3 = (%d,%d)″, p3.getX(), p3.getY());
}
}
class Point {
private int x;
private int y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
public int getX() { return x; }
public void setX(int x) { this.x = x; }
public int getY() { return y; }
public void setY(int y) { this.y = y; }
}

page 120 2.5 Systems Development

Exhibit 2.5.3-2 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-3 (07-10-2020)
Java Programming - Object Test Results

Before change: After change:

Point 1 = (4,6)
Point 2 = (7,9)
Point 3 = (7,9)

Point 1 = (4,6)
Point 2 = (10, 20)
Point 3 = (10, 20)

Programming and Source Code Standards 2.5.3 page 121

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-3

Exhibit 2.5.3-4 (07-10-2020)
Java Programming Example of “instanceof”

Wrapping Explicit Cast using “Instanceof” Check

public class RecastTest {
public static void main(String[] args) {
Dog collie = new Dog();
collie.setName(″Collie″);
System.out.println(collie.getName());
System.out.println(″Leg count: ″ + collie.getLegs());
Animal animal = (Animal)collie;
System.out.println(animal.getName());
// this generates a compiler error
// System.out.println(″Leg count: ″ + animal.getLegs());
if (animal instanceof FourLeggedAnimal) {
System.out.println(″Leg count: ″ + ((FourLeggedAnimal)animal).getLegs());
}
}
}

page 122 2.5 Systems Development

Exhibit 2.5.3-4 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-5 (07-10-2020)
Java Programming Example -Subclass

Java Programming Subclass Example

class Animal {private String name;
public String getName() { return name; }
public void setName(String name) { this.name = name; }
}

class FourLeggedAnimal extends Animal {
public int getLegs() { return 4; }

}

class Dog extends FourLeggedAnimal {
@Override

public String getName() { return ″Shaggy ″ + super.getName();
}
}

Programming and Source Code Standards 2.5.3 page 123

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-5

Exhibit 2.5.3-6 (07-10-2020)
Java Programming Example - Enumeration Type

Enumeration Type Example

enum Month {

JANUARY(31), FEBRUARY(28), MARCH(31), APRIL(30), MAY(31), JUNE(30), JULY(31),
AUGUST(31), SEPTEMBER(30), OCTOBER(31), NOVEMBER(30), DECEMBER(31);

private int days = 0;
private Month(int days) {
this.days = days;
}

public int getDays(int year) {
if (days == 28) {
if (year % 4 == 0 && year % 100 > 0) {

return 29;
}

else if (year % 100 == 0 && year % 400 > 0) {
return 28;
}

else if (year % 400 == 0) {
return 29;

}
else {

return 28;
}

}
else {

return days;
}

}
}

public class EnumTest {
static public void main(String[] args) {

System.out.printf(″Days in January 2020: %d″, Month.JANUARY.getDays(2020));
System.out.printf(″Days in April 2020: %d″, Month.APRIL.getDays(2020));
System.out.printf(″Days in February 1900: %d″, Month.FEBRUARY.getDays(1900));
System.out.printf(″Days in February 2000: %d″, Month.FEBRUARY.getDays(2000));
System.out.printf(″Days in February 2019: %d″, Month.FEBRUARY.getDays(2019));
System.out.printf(″Days in February 2020: %d″, Month.FEBRUARY.getDays(2020));

}
} // Output

Days in January 2020: 31
Days in April 2020: 30 Days in February 1900: 28
Days in February 2000: 29 Days in February 2019: 28
Days in February 2020: 29

page 124 2.5 Systems Development

Exhibit 2.5.3-6 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-7 (07-10-2020)
Java Programming Example - Nested Classes

Java Programming Example of Nested Classes

import java.util.Optional;
interface Greeting {

public String getMessage(String name);
}

interface Greeting {
public String getMessage(String name);

}

public class AnonymousClassExample {
static public void main(String[] args) {

Greeting englishGreeting = new Greeting() {
public String getMessage(String name) {

Optional nameOptional = Optional.ofNullable(name);
return ″Hello ″ + nameOptional.orElse(″Anonymous″);

}
};

System.out.println(englishGreeting.getMessage(″Bob″));
System.out.println(englishGreeting.getMessage(null));
}

}

// Output
Hello Bob
Hello Anonymous

Programming and Source Code Standards 2.5.3 page 125

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-7

Exhibit 2.5.3-8 (07-10-2020)
Java Programming Class Switch Example

Java Programming Class Switch

enum Quarter {
Q1, Q2, Q3, Q4;
static public Quarter getQuarter(int index) {
if (index == 1) {
return Q1;
}
else if (index == 2) {
return Q2;
}
else if (index == 3) {
return Q3;
}
else
{
return Q4;
}
}
}

public class SwitchExample
{
static public void main(String[] args) {
Quarter q1 = Quarter.valueOf(″Q1″);
Quarter q4 = Quarter.getQuarter(4);
displayRequirements(q1);
displayRequirements(q4);
}

static private void displayRequirements(Quarter currentQuarter) {
boolean taxesDue = false;
boolean runAudit = true;
switch (currentQuarter) {
case Q2: runAudit = false;
break;
case Q1:
runAudit = false;
/* falls through */
case Q3:
taxesDue = true;
break;
case Q4:
break;
}
System.out.printf(″%s: taxesDue=%s, runAudit=%s″, currentQuarter.toString(), taxesDue, runAudit);
}
}

page 126 2.5 Systems Development

Exhibit 2.5.3-8 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-8 (Cont. 1) (07-10-2020)
Java Programming Class Switch Example

Java Programming Class Switch

// Output
Q1:

taxesDue=true,
runAudit=false
Q4:
taxesDue=false,
runAudit=true

Programming and Source Code Standards 2.5.3 page 127

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-8

Exhibit 2.5.3-9 (07-10-2020)
Java Programming Design Example

Design Example

import java.time.LocalDateTime
; public class DesignExample {
private static LocalDateTime firstDate;
private LocalDateTime instanceDate;
// This is the type constructor static {
firstDate = LocalDateTime.now();
}
static public LocalDateTime getFirstDate() {
return firstDate;
}
static public void main(String[] args) {
DesignExample ex1 = new DesignExample();
System.out.printf(″Example 1: First=[%s],Instance[%s]″, DesignExample.getFirstDate(),
ex1.getInstanceDate());
// Put in an execution pause so a date difference can be detected. try {
Thread.sleep(5000);
}
catch (InterruptedException e) {
// TODO Auto-generated catch block e.printStackTrace();
}
DesignExample ex2 = new DesignExample();
System.out.printf(″Example 2: First=[%s],Instance[%s]″, DesignExample.getFirstDate(),
ex2.getInstanceDate());
}
// This is the instance constructor.
public DesignExample() {
instanceDate = LocalDateTime.now();
}
public LocalDateTime getInstanceDate() {
return instanceDate;
}
}

// Output
Example 1: First=[2019-05-30T15:07:08.520],Instance[2019-05-30T15:07:08.566]
Example 2: First=[2019-05-30T15:07:08.520],Instance[2019-05-30T15:07:13.581]

page 128 2.5 Systems Development

Exhibit 2.5.3-9 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-10 (07-10-2020)
Java Programming Constructor Example

Java Programming Constructor

import java.time.LocalDateTime;
public class DesignExample {
private static LocalDateTime firstDate;
private LocalDateTime instanceDate;
// This is the type constructor static {
firstDate = LocalDateTime.now();
}
static public LocalDateTime getFirstDate() {
return firstDate;
}
static public void main(String[] args) {
DesignExample ex1 = new DesignExample();
System.out.printf(″Example 1: First=[%s],Instance[%s]″, DesignExample.getFirstDate(),
ex1.getInstanceDate());
// Put in an execution pause so a date difference can be detected
. try {
Thread.sleep(5000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
DesignExample ex2 = new DesignExample();
System.out.printf(″Example 2: First=[%s],Instance[%s]″, DesignExample.getFirstDate(),
ex2.getInstanceDate());
}
// This is the instance constructor. public DesignExample() {
instanceDate = LocalDateTime.now();
}
public LocalDateTime getInstanceDate() {
return instanceDate;
}
}

// Output
Example
1: First=[2019-05-30T15:07:08.520],Instance[2019-05-30T15:07:08.566]

Example
2: First=[2019-05-30T15:07:08.520],Instance[2019-05-30T15:07:13.581]

Programming and Source Code Standards 2.5.3 page 129

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-10

Exhibit 2.5.3-11 (07-10-2020)
Java Programming Abstract Properties

Abstract Properties

abstract public class Shape {
abstract public double getArea();
}
class Circle extends Shape {
private int radius = 0;
public Circle() {
}
public Circle(int radius) {
this.radius = radius;
}
public void setRadius(int radius) {
this.radius = radius;
}
public int getRadius() { return radius;
} @Override public double getArea() {
return Math.pow(radius, 2) * Math.PI;
}
}

class Rectangle extends Shape {
private int width = 0;
private int height = 0;
public Rectangle() {
}
public Rectangle(int width, int height) {
this.width = width;
this.height = height;
}
@Override public double getArea() {
return width * height;
}
}
class Square extends Rectangle {
public Square() {
}
public Square(int size) {
super(size, size);
}
}

page 130 2.5 Systems Development

Exhibit 2.5.3-11 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-12 (07-10-2020)
Java Programming Example of Event Design

Event Design

import java.util.ArrayList;
import java.util.EventListener;
import java.util.EventObject;
import java.util.List;
class PropertyEvent extends EventObject {

private static final long serialVersionUID = 6111548293142751985;
private String name = ″″;

public PropertyEvent(Object source, String name) {
super(source);
this.name = name;
}

public String getName() { return name;
}

}
interface PropertyListener extends EventListener {

void propertyChanged(PropertyEvent e);
}
public class ListenerExample {

private Listener listeners = new ArrayList<>();
private String prop = ″″;

public void addListener(PropertyListener listener) {
listeners.add(listener);

}
public void removeListener(PropertyListener listener) {
listeners.add(listener);

}
public String getProperty() { return prop;

}
public void setProperty(String value) {

prop = value;
raisePropertyChangedEvent(new PropertyEvent(this, ″Property″));
}
protected void raisePropertyChangedEvent(PropertyEvent e) {

for (PropertyListener listener : listeners) {
listener.propertyChanged(e);

}
}

Programming and Source Code Standards 2.5.3 page 131

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-12

Exhibit 2.5.3-13 (07-10-2020)
Java Programming Thread example

Thread Example

class NirvanaRunnable implements Runnable {
private ThreadExample example = null;
public NirvanaRunnable(ThreadExample example) {
this.example = example;
}
@Override public void run() {
example.guardedJoy();
}
} class EatingRunnable implements Runnable {
private ThreadExample example = null;
public EatingRunnable(ThreadExample example) {
this.example = example;
} @Override public void run() {
example.notifyJoy();
}
} public class ThreadExample {
private boolean joy = false;
static public void main(String[] args) {
ThreadExample example = new ThreadExample();
Thread nirvanaThread = new Thread(new NirvanaRunnable(example));
nirvanaThread.start();
System.out.println(″Started nirvana thread...″);
Thread eatingThread = new Thread(new EatingRunnable(example));
eatingThread.start();
System.out.println(″Started eating thread...″);
} public synchronized void guardedJoy() {
// This guard only loops once for each special event, which may not
// be the event we’re waiting for. while(!joy) {
try {
wait();
} catch (InterruptedException e) {}
}
System.out.println(″Joy and efficiency have been achieved!″);
}
public synchronized void notifyJoy() {
joy = true;
System.out.println(″Reached joy!″);
notifyAll();
}
}

// Output
Started nirvana thread...
Started eating thread...
Reached joy!
Joy and efficiency have been achieved!

page 132 2.5 Systems Development

Exhibit 2.5.3-13 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-14 (07-10-2020)
Java Programming Examples of Single Words used for Capitalization Purposes

Java Programming Single Words used for Capitalization Purposes

Pascal Camel Not

BitFlag bitFlag Bitflag

Callback callback CallBack

Canceled canceled Cancelled

DoNot doNot Don’t

Email email EMail

Endpoint endpoint Endpoint

FileName fileName Filename

Gridline gridline GridLine

Hashtable hashtable HashTable

Id id ID

Indexes indexes Indices

LogOff logOff LogOut

LogOn logOn LogIn

Metadata metaData MetaData,

Multipanel multipanel MultiPanel

Multiview multiview MultiView

Namespace namespace NameSpace

Ok ok OK

Pi pi PI

Placeholder placeholder PlaceHolder

SignIn signIn SignOn

SignOut signOut SignOff

UserName userName Username

WhiteSpace whiteSpace Whitespace

Writable writable Writable

Programming and Source Code Standards 2.5.3 page 133

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-14

Exhibit 2.5.3-15 (07-10-2020)
C Programming Source Code Template

C Programming Source Code Template

/**

//

// Internal Revenue Service

// For Official Use Only

//

// Filename: Filename

// Description: Describe the purpose of the objects in the file,

// followed, in the case of source files, by a list

// of functions whose definitions appear in the file

// Related Files: An identification of any routines or files that

// this file may require

// Restrictions/ Known special cases where the file may not work

// Problems:

//

// Date Modified: YYYY/MM/DD

// Version id: Revision:

// Author: <First Name> <Last Name>

// Locked by: $Locker$

//

// Revision History: Will be provided by ClearCase

**/

Example of C Programming Header Files number 1

C Programming Header Files number 1

/*h**

* H E A D E R F I L E S *

**/

/* System header files */

#include <stdio.h>

page 134 2.5 Systems Development

Exhibit 2.5.3-15 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-15 (Cont. 1) (07-10-2020)
C Programming Source Code Template

C Programming Header Files number 1

/*h**

#include <stdlib.h>

#include <string.h>

#include <limits.h>

#include <unistd.h>

#include <signal.h>

#include <errno.h>

/* User include files */

#include “archive.h”

#include “acdbApi.h”

#include “scdbApi.h”

C Programming Example of Defines number 1

C Programming - Defines number 1

* D E F I N E S *

/*d**

**/

/* Debug flags */

#ifdef FOR_MAC

#define SIGALRM 14

#end-if

/* Constants */

#define SUCCESS 0

#ifndef TRUE

#define TRUE 1

#define FALSE 0

#end-if

/* Macros */

#define MIN(a,b) ((a)<(b)) ? (a) : (b)

Programming and Source Code Standards 2.5.3 page 135

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-15

Exhibit 2.5.3-15 (Cont. 2) (07-10-2020)
C Programming Source Code Template

C Programming example of TypeDef Number 1

C Programming - TypeDef Number 1

/*t**

* T Y P E D E F *

**/

typedef struct ECT_REG_HEADER_S

{

char *pFirstEntry; /* ptr to 1st registry entry */

int NumEntries; /* number of entries */

} ECT_REG_HEADER_T;

C Programming example of Enums number 1

* E N U M S *

/*e**

**/

enum TAX_FORMS_E

{

F_1040 = 0,

F_1065,

F_941_ELF,

F_941_OLF };

C Programming Example of Definitions number 1

* DEFINITIONS*

/*g**

**/

/* External data */

extern char *pStr; /* comments */

extern int GlobalExt; /* comments */

/* Non-static data */

page 136 2.5 Systems Development

Exhibit 2.5.3-15 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-15 (Cont. 3) (07-10-2020)
C Programming Source Code Template

* DEFINITIONS*

int DataGl; /* comments */

char *pStr; /* comments */

/* Static data */

static int DataGl; /* comments */

static char *pStr; /* comments */

C Programming Function Examples number 1

* F U N C T I O N P R O T O T Y P E S (alphabetized) *

/*fp***

**/

int FunctionName1(int par1, char *par2_p);

Void FunctionName2(int par1, char *par2_p);

*

/*f**

* Function Name: FunctionName1

* Description: A description of the major task(s) performed by

* routine. It should be a series of one or more

* simple verb/object statements

* Input parameters : par1 - description

* par2_P - description

* Output parameters: *par2_p - description

* Function return - SUCCESS or FAIL

**/

int FunctionName1(int par1, char *par2_p)

{

/* LOCAL VARIABLES and CONSTANTS*/

/* FUNCTION BODY */

return return_code;

}

Programming and Source Code Standards 2.5.3 page 137

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-15

Exhibit 2.5.3-15 (Cont. 4) (07-10-2020)
C Programming Source Code Template

Example of C Function with Multiple Routines

* Function Name: FunctionName2

/*f**

* Description: A description of the major task(s) performed by

* routine. It should be a series of one or more

* simple verb/object statements

* Input parameters : par1 - description

* par2_P - description

* Output parameters: *par2_p - description

**/

void FunctionName2(int par1, char *par2_p)

{

/* LOCAL VARIABLES and CONSTANTS*/

/* FUNCTION BODY */

}

page 138 2.5 Systems Development

Exhibit 2.5.3-15 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-16 (07-10-2020)
C Language Header File Template

C Language Header File

// Description: Describe the purpose of the objects in the file,

/**

//2

// Internal Revenue Service

// For Official Use Only

//

// Filename: Filename

//

followed, in the case of source files, by a list

// of functions whose definitions appear in the file

// Related Files: An identification of any routines or files that

// this file may require

// Restrictions/ Known special cases where the file may not work

// Problems:

//

// Date Modified: Date: YYYY/MM/DD

// Version id: Revision:

// Author: Author: <First Name> <Last Name>

// Locked by: $Locker:$

//

// Revision History: Will be provided by ClearCase

**/

C Language Defines Template number 2

* D E F I N E S Template *

#ifndef TEMPLATE

#define TEMPLATE

/**

**/

/* Debug flags */

Programming and Source Code Standards 2.5.3 page 139

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-16

Exhibit 2.5.3-16 (Cont. 1) (07-10-2020)
C Language Header File Template

* D E F I N E S Template *

#ifdef FOR_MAC

#define SIGALRM 14

#END-IF

/* Constants /

#define SUCCESS

0

#ifndef TRUE

#define TRUE 1

#define FALSE 0

#END-IF

/* Macros */

#define MIN(a,b) ((a)<(b)) ? (a) : (b)

C Programing Example of TypeDefs number 2

* T Y P E D E F S Template *

/**

**/

typedef struct ECT_REG_HEADER_S

{

char *pFirstEntry; /* ptr to 1st registry entry */

int NumEntries; /* number of entries */

} ECT_REG_HEADER_T;

C Programming Example of Enums number 2

* E N U M S *

/**

**/

enum TAX_FORMS_E

{

F_1040 = 0,

page 140 2.5 Systems Development

Exhibit 2.5.3-16 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-16 (Cont. 2) (07-10-2020)
C Language Header File Template

* E N U M S *

F_1065,

F_941_ELF,

F_941_OLF

};

C Programming Example of Functions

* F U N C T I O N P R O T O T Y P E S (alphabetized) *

**/

#END-IF /* TEMPLATE */

void FunctionName2(int par1, char *par2_p);

int FunctionName1(int par1, char *par2_p);

/**

Programming and Source Code Standards 2.5.3 page 141

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-16

Exhibit 2.5.3-17 (07-10-2020)
Acronyms and Terms

Acronyms and Terms

Acronym Terms

ACIO Assistant Chief Information Officer

ALC Assembler Language Code

ASCII American Standard Code for Information Interchange

CICS Customer Information Control System

COBOL Common Business-Oriented Language

ECL Executive Control Language

EOF End of File

GAO Government Accountability Office

IBM International Business Machines Corporation

ISBN International Standard Book Number

HLASM High-Level Assembler

HTML Hypertext Markup Language

IC Internal Controls

IT Information Technology

ISO International Organization for Standardization

JCL Job Control Language

JNI Java Native Interface

JRE Java Runtime Environment

JSON Java Script Object Notation

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

MASM Meta-Assembler

OMB Office of Management and Budget

QA Quality Assurance

OS Operating System

OWASP Open Web Application Security Project

PNG Portable Network Graphics

UNIYSIS UNIVAC Systems Corporation

XML Extensible Markup Language

page 142 2.5 Systems Development

Exhibit 2.5.3-17 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-18 (07-10-2020)
Terms and Definitions

Terms Definitions

Case Structure A control structure used when there are numerous paths to
be followed depending on the contents of a given field or
variable.

Conditional Statement An instruction that use the word “IF” to test for the
existence of a condition.

Framework A set of functions within a system, and how they interrelate

Lightweight Directory Access Protocol Open vendor industry standard application protocol for
accessing and maintaining distributed directory information
services over an Internet Protocol (IP) network. Allows
sharing of information about users.

High-Level Assembler IBM’s assembler programming language and the assembler
itself for the IBM z/OS, z/VM, OS/390, MVS, VM and VSE
operating systems. Released June 1992

Hypertext Markup Language An application of the Standard Generalized Markup
Language, which is the international standard for Markup,
and is the primary markup language used to write content
on the web.

Internal Controls Management controls that provide reasonable assurance
that obligations and cost are in compliance with applicable
laws, funds, property; and other assets are safeguarded
against waste, loss, unauthorized use or misappropriation.

International Organization for Standard-
ization

The International Organization for Standardization is an in-
dependent, non-governmental organization, the members of
which are the standards organizations of the 164[1] member
countries. It is the world’s largest developer of voluntary in-
ternational standards and facilitates world trade by providing
common standards between nations. Over twenty thousand
standards have been set covering everything from manufac-
tured products and technology to food safety, agriculture
and healthcare

Java Bean An object-oriented programming interface that allows you to
build re-usable applications or program building blocks
called components. Java Bean can be deployed in a
network on any major operating system platform

Java Native Interface Programming framework that enables Java code running in
a Java Virtual Machine to call and be called by a native ap-
plication (programs specific to a hardware and operating
system platform and libraries written in other languages e.g.,
C, C++ and Assembler.

Programming and Source Code Standards 2.5.3 page 143

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-18

Exhibit 2.5.3-18 (Cont. 1) (07-10-2020)
Terms and Definitions

Terms Definitions

Java Runtime Environment (JRE) Also known as Java Runtime is part of the Java Develop-
ment kit that contains: Java Virtual Machine(JVM), Java
Platform core classes, and supporting Java platform
libraries.

Java Script Object Notation A text-based human readable interchanged format used for
representing simple data structures and objects in Web
browser based code.

Java Virtual Machine(JVM) JVM has two functions: to allow Java programs to run on
any device or OS, (known as the “Write Once, run
Anywhere” principle), and to Manage and optimize program
memory..

OWASP The Open Web Application Security Project is a nonprofit
organization focused on improving the security of software.
OWASP provides impartial information about AppSec to indi-
viduals, corporations, universities, government agencies,
and other organizations worldwide.

Portable Network Graphics A raster graphics file format that supports loss-less data
compression, PNG was created as an improved replace-
ment for Graphics Interchanged Format (GIF)

Program A set of instructions that operate on input data and convert it
to output.

Refactor Altering an application’s source code without changing its
external behavior. The purpose of code refactoring is to
improve some of the nonfunctional properties of the code,
e.g. readability, complexity, maintainability, and extensibility

Extensible Stylesheet Language Trans-
formation (XML)

A language for transforming XML document into other XML
documents or other formats such as HTML for web pages,
plain text or XSL Formatting Objects which may be
converted to other formats, such as PDF, PostScript and
PNG supported in modern web browsers.

z/OS A 64-bit operating system for IBM mainframes, produced by
IBM, and derived by successor OS/390.

page 144 2.5 Systems Development

Exhibit 2.5.3-18 Internal Revenue Manual Cat. No. 33498W (07-10-2020)

Exhibit 2.5.3-19 (07-10-2020)
Language Code (ALC) Standards and References

• IBM Systems Standard Manual Version 5
• BCPA 40 ALC Student Guide
• IRS Messages and Codes Edition 2
• High Level Assembler for z/OS & z/VM & z/VSE Language Reference Version 1R6
• High Level Assembler for z/OS & z/VM & z/VSE Programmer’s Guide Version 1R6
• UNISYS ClearPath OS2200 Meta-Assembler (MASM) Programming Reference Manual Level 6R3J
• UNISYS ClearPath OS2200 Executive Control Language (ECL) and FURPUR Reference Manual
• Assembler H Version 2 Application Programming Guide , SC26-4036
• Assembler H Version 2 Application Programming Language Reference, SC26-4037
• MVS JCL Reference, GC28-1352
• MVS/XA Linkage Editor & Loader User’s Guide, GC26-4143
• MVS/XA Message Library: System Messages Vol 1, GC28-1376
• MVS/XA Message Library: System Messages Vol 2, GC28-1377
• MVS/XA Message Library: System Codes, GC28-1157
• MVS/XA Data Administration, GC26-4149
• MVS/XA Data Administration: Utilities, GC26-4150
• MVS/XA Data Administration: Macro Instruction Reference, GC26-4141
• MVS/XA Utilities Messages , GC26-4021
• MVS/XA TSO Terminal User’s Guide, GC28-1274
• TSO/E TSO Command Language Reference, GC28-0646
• ISPF/PDF Program Reference, SC34-2139

Programming and Source Code Standards 2.5.3 page 145

Cat. No. 33498W (07-10-2020) Internal Revenue Manual Exhibit 2.5.3-19

	Manual Transmittal
	 Table of Contents
	2.5.3.1 Program Scope and Objectives
	 2.5.3.1.1 Background
	 2.5.3.1.2 Authority
	 2.5.3.1.3 Roles and Responsibilities
	 2.5.3.1.4 Program Management and Review
	 2.5.3.1.5 Program Controls
	 2.5.3.1.6 Acronyms and Terms
	 2.5.3.1.7 Related Resources
	2.5.3.2 Federal Government Application Standards Guidance
	 2.5.3.2.1 Application Security Control Frameworks
	 2.5.3.2.1.1 Application Security Controls
	 2.5.3.2.2 AD Waivers
	2.5.3.3 General Programming
	 2.5.3.3.1 Goals
	 2.5.3.3.2 Basic Principles
	 2.5.3.3.3 Design Specifications
	 2.5.3.3.4 Documenting, Testing, and Debugging Source Code
	 2.5.3.3.4.1 Documenting Code
	 2.5.3.3.4.2 Testing and Debugging Code
	 2.5.3.3.5 Selecting Programming Languages
	 2.5.3.3.6 Data Controls
	 2.5.3.3.6.1 Basic Principles of Data Controls
	 2.5.3.3.6.2 Programming Considerations for Data Controls
	 2.5.3.3.6.3 Internal Controls
	 2.5.3.3.6.3.1 Input Controls
	 2.5.3.3.6.3.2 Processing Controls
	 2.5.3.3.6.3.3 Output Controls
	 2.5.3.3.6.4 External Data Controls
	 2.5.3.3.6.4.1 Control Totals
	 2.5.3.3.6.4.2 Intra-Run Controls
	 2.5.3.3.6.5 Including Data Controls
	 2.5.3.3.7 File Design and Cartridge Interface Formats
	 2.5.3.3.7.1 File Design Formats
	 2.5.3.3.7.1.1 Record Format Design
	 2.5.3.3.7.1.2 Defining Data Fields
	 2.5.3.3.7.1.3 File Design
	 2.5.3.3.7.2 Tape Interface
	 2.5.3.3.8 Date Fields
	 2.5.3.3.8.1 Year
	 2.5.3.3.8.2 Date
	 2.5.3.3.8.3 Gregorian Dates
	 2.5.3.3.8.4 Exceptions
	2.5.3.4 COBOL Programming
	 2.5.3.4.1 COBOL Overview
	 2.5.3.4.2 COBOL Basic Principles
	 2.5.3.4.3 COBOL Structured Programming
	 2.5.3.4.3.1 COBOL Programming Standards
	 2.5.3.4.3.2 COBOL Identification Division
	 2.5.3.4.3.3 COBOL Environment Division
	 2.5.3.4.3.4 COBOL Data Division
	 2.5.3.4.3.5 COBOL Procedure Division
	 2.5.3.4.4 COBOL Compile Run-Time Warning Messages
	2.5.3.5 C Programming
	 2.5.3.5.1 C File Naming
	 2.5.3.5.2 C Source Code Files
	 2.5.3.5.2.1 C Prologue
	 2.5.3.5.2.2 C Includes
	 2.5.3.5.2.2.1 C Header File Organization
	 2.5.3.5.2.2.2 C Header File Inclusion in the File that defines the Function
	 2.5.3.5.2.2.3 C Nested Header Files
	 2.5.3.5.2.2.4 C Header File Names
	 2.5.3.5.2.3 C Defines and Typedefs
	 2.5.3.5.2.4 C Global Definitions
	 2.5.3.5.2.5 C Function Placement
	 2.5.3.5.3 C Other Files
	 2.5.3.5.4 C Global Variable Declarations
	 2.5.3.5.4.1 C Global Variables
	 2.5.3.5.4.2 C Structure Declaration
	 2.5.3.5.4.3 C Typedef Declaration
	 2.5.3.5.5 C Local Variable Declarations
	 2.5.3.5.5.1 C Local Variable Names
	 2.5.3.5.5.2 C Typedef Declaration
	 2.5.3.5.5.3 C Abbreviations for Common Variable
	 2.5.3.5.6 C Constants
	 2.5.3.5.6.1 C Defining Constants
	 2.5.3.5.6.2 C Consistency of Constant Definitions
	 2.5.3.5.6.3 C Conventional Constants
	 2.5.3.5.6.4 C Enumeration Data
	 2.5.3.5.6.5 C Symbolic Constants - #define
	 2.5.3.5.7 C Functions
	 2.5.3.5.7.1 C Return Values
	 2.5.3.5.7.2 C Parameter Lists
	 2.5.3.5.7.3 C Function Body
	 2.5.3.5.7.4 C Function Prototype
	 2.5.3.5.7.5 C Function Naming
	 2.5.3.5.8 C Comments
	 2.5.3.5.8.1 C Template for File and Header
	 2.5.3.5.8.2 Function Comments
	 2.5.3.5.9 C Statements
	 2.5.3.5.9.1 C Statements per Line
	 2.5.3.5.9.2 C Single Statement Blocks
	 2.5.3.5.9.3 C Multiple Statement Blocks
	 2.5.3.5.9.4 C Levels of Control Structure Nesting
	 2.5.3.5.9.5 C Goto Statement
	 2.5.3.5.9.6 C Break Statement
	 2.5.3.5.9.7 C Null Statement
	 2.5.3.5.9.8 Conditional Statement
	 2.5.3.5.9.9 C Exit Statement
	 2.5.3.5.9.10 C Default Truth Value
	 2.5.3.5.9.11 C - Added Statements for Debugging
	 2.5.3.5.10 Operators
	 2.5.3.5.11 ESQL/C
	 2.5.3.5.11.1 ESQL/C Database Error Checks
	 2.5.3.5.11.2 ESQL/C Operations
	 2.5.3.5.11.3 ESQL/C Performance
	 2.5.3.5.11.4 SQL Statements
	 2.5.3.5.12 Whitespace
	 2.5.3.5.12.1 Vertical Spacing of Conditional Operators on Separate Lines
	 2.5.3.5.12.2 C Spacing for Parentheses
	 2.5.3.5.13 C Portability
	 2.5.3.5.13.1 C Machine-Dependent Code Placement
	 2.5.3.5.13.2 C Machine-Dependent Code Usage
	2.5.3.6 C++ Programming Overview
	 2.5.3.6.1 C++ Scope
	 2.5.3.6.2 C++ Classes
	 2.5.3.6.2.1 C++ Class Declaration
	 2.5.3.6.2.2 C++ Constructors and Destructors
	 2.5.3.6.2.3 C++ Class Data Initialization
	 2.5.3.6.2.4 C++ Class Execution
	 2.5.3.6.2.5 C++ Inheritance
	 2.5.3.6.2.6 C++ Initialization
	 2.5.3.6.2.6.1 C++ Initialization of Variables
	 2.5.3.6.2.6.2 C++ Initialization of Classes
	 2.5.3.6.3 Variables Scope
	 2.5.3.6.4 Data Types
	 2.5.3.6.5 Conditional Constructs
	 2.5.3.6.6 File Prologs
	 2.5.3.6.6.1 File Size and Structure
	 2.5.3.6.6.1.1 File Size
	 2.5.3.6.6.1.2 File Structure
	 2.5.3.6.6.2 C++ Name Conventions
	 2.5.3.6.6.2.1 C++ General Naming Conventions
	 2.5.3.6.6.2.1.1 C++ Identifiers
	 2.5.3.6.6.2.1.2 C++ Functions and Parameter
	 2.5.3.6.6.2.1.3 C++ Constants
	 2.5.3.6.7 C++ Formatting
	 2.5.3.6.7.1 C++ Indentation
	 2.5.3.6.7.2 C++ Spacing
	 2.5.3.6.7.3 Grouping
	 2.5.3.6.7.4 Includes
	 2.5.3.6.8 Functions
	 2.5.3.6.8.1 Declarations
	 2.5.3.6.8.2 Function Parameters
	 2.5.3.6.8.3 Function Invocation, Execution, and Return
	 2.5.3.6.9 Error Handling
	 2.5.3.6.9.1 General Error Handling
	 2.5.3.6.9.2 Throwing Exceptions
	 2.5.3.6.9.3 Handling Exceptions
	 2.5.3.6.10 Expressions
	 2.5.3.6.10.1 Expression Arithmetic
	 2.5.3.6.10.2 Type Conversions
	 2.5.3.6.10.3 Pointers in Expressions
	 2.5.3.6.11 Comments
	 2.5.3.6.12 Memory Management
	 2.5.3.6.12.1 Heap and Stack Memories
	 2.5.3.6.12.2 Memory Leaks
	 2.5.3.6.12.3 Buffers Overflows
	2.5.3.7 Assembler Language Code (ALC) Programming
	 2.5.3.7.1 Assembler Language Code (ALC) Overview
	 2.5.3.7.2 Assembler Language Code (ALC) Basic Principles
	 2.5.3.7.3 Assembler Language Code (ALC) Program Comments and Documentation
	 2.5.3.7.4 Assembler Language Coding Conventions (ALC)
	 2.5.3.7.4.1 Assembler Language Code (ALC) Defining Constants and Storage
	 2.5.3.7.5 Assembler Language Code (ALC) Standard Macros
	2.5.3.8 Java Programming Language
	 2.5.3.8.1 Java Programming Overview
	 2.5.3.8.2 Program Objectives
	 2.5.3.8.2.1 Source File Structure
	 2.5.3.8.2.1.1 Beginning Comments
	 2.5.3.8.2.1.2 Package and Import Statements
	 2.5.3.8.2.2 Naming Conventions
	 2.5.3.8.2.2.1 Capitalization Conventions
	 2.5.3.8.2.2.2 Type Member Names
	 2.5.3.8.2.2.3 General Names
	 2.5.3.8.2.2.4 Assembly Names
	 2.5.3.8.2.2.5 Package Names
	 2.5.3.8.2.2.6 Resource Names
	 2.5.3.8.3 Layout Conventions
	 2.5.3.8.3.1 Java Programming Example - Wrapping Lines
	 2.5.3.8.4 Java Programming Commenting Conventions
	 2.5.3.8.4.1 Java Programming Single Line Comments
	 2.5.3.8.4.2 Java Programming Block Comments
	 2.5.3.8.5 Class Design
	 2.5.3.8.5.1 Packages
	 2.5.3.8.5.2 Interfaces
	 2.5.3.8.5.3 Classes
	 2.5.3.8.5.3.1 Abstract Classes
	 2.5.3.8.5.3.2 Sealed Classes
	 2.5.3.8.5.3.3 Static Classes
	 2.5.3.8.5.3.4 Inner Classes
	 2.5.3.8.5.3.5 Immutable Classes
	 2.5.3.8.5.3.6 Objects
	 2.5.3.8.5.3.7 Class Access Modifiers
	 2.5.3.8.5.3.8 Fields
	 2.5.3.8.5.3.9 Types
	 2.5.3.8.5.3.9.1 Autoboxing and Unboxing Types
	 2.5.3.8.5.3.9.2 Enumeration Types
	 2.5.3.8.5.3.9.3 Nullable Types
	 2.5.3.8.5.3.9.4 Nested Classes
	 2.5.3.8.5.3.9.5 Numeric Types
	 2.5.3.8.5.3.9.6 Generics
	 2.5.3.8.6 Statements
	 2.5.3.8.6.1 Variable Declaration
	 2.5.3.8.6.2 Expressions
	 2.5.3.8.6.3 Conditional Statements
	 2.5.3.8.6.4 Iteration Statement
	 2.5.3.8.6.5 Empty Statement
	 2.5.3.8.6.6 Assertion Statement
	 2.5.3.8.7 Expressions
	 2.5.3.8.7.1 Lambda Expressions
	 2.5.3.8.8 Operators
	 2.5.3.8.9 Member Design
	 2.5.3.8.9.1 Member Overloading
	 2.5.3.8.9.2 Constructor Design
	 2.5.3.8.9.3 Finalizer Design
	 2.5.3.8.9.4 Field Design
	 2.5.3.8.9.5 Property Design
	 2.5.3.8.9.5.1 Abstract Properties
	 2.5.3.8.9.5.2 Constants
	 2.5.3.8.9.6 Parameter Design
	 2.5.3.8.9.6.1 Variable Length Parameter
	 2.5.3.8.9.6.2 Event Design
	 2.5.3.8.9.7 Methods
	 2.5.3.8.9.8 Language Guidelines
	 2.5.3.8.9.8.1 Arrays
	 2.5.3.8.9.9 Exceptions
	 2.5.3.8.9.9.1 Catching and Handling Exceptions
	 2.5.3.8.9.9.2 Throwing Exceptions
	 2.5.3.8.9.9.3 Unchecked Exception Best Practices
	 2.5.3.8.9.10 Concurrency
	 2.5.3.8.9.10.1 Threads
	 2.5.3.8.9.10.2 High-Level Concurrency
	 2.5.3.8.9.11 Native Code Interoperability
	 2.5.3.8.9.12 Design for Extensibility
	 2.5.3.8.9.12.1 Unsealed Classes
	 2.5.3.8.9.12.2 Protected Members
	 2.5.3.8.9.12.3 Events and Callbacks
	 2.5.3.8.9.12.4 Virtual Members
	 2.5.3.8.9.12.5 Abstractions
	 2.5.3.8.9.12.6 Base Classes for Implementing Abstractions
	 2.5.3.8.9.12.7 Sealing
	 2.5.3.8.9.13 Secure Coding Guidelines
	 2.5.3.8.9.13.1 Fundamentals
	 2.5.3.8.9.13.2 Denial of Service
	 2.5.3.8.9.13.3 Confidential Information
	 2.5.3.8.9.13.4 Input Validation and Data Sanitization
	 2.5.3.8.9.13.5 Injection and Inclusion
	 2.5.3.8.9.13.6 Accessibility and Extensibility
	 2.5.3.8.9.13.7 Serialization and Deserialization
	 2.5.3.8.9.13.8 Access Control
	 2.5.3.8.9.13.9 Defensive Use of the Java Native Interface (JNI)
	2.5.3-1 Java Programming- Example of Wrapping Lines
	2.5.3-2 Java Programming Example of Objects
	2.5.3-3 Java Programming - Object Test Results
	2.5.3-4 Java Programming Example of “instanceof”
	2.5.3-5 Java Programming Example -Subclass
	2.5.3-6 Java Programming Example - Enumeration Type
	2.5.3-7 Java Programming Example - Nested Classes
	2.5.3-8 Java Programming Class Switch Example
	2.5.3-9 Java Programming Design Example
	2.5.3-10 Java Programming Constructor Example
	2.5.3-11 Java Programming Abstract Properties
	2.5.3-12 Java Programming Example of Event Design
	2.5.3-13 Java Programming Thread example
	2.5.3-14 Java Programming Examples of Single Words used for Capitalization Purposes
	2.5.3-15 C Programming Source Code Template
	2.5.3-16 C Language Header File Template
	2.5.3-17 Acronyms and Terms
	2.5.3-18 Terms and Definitions
	2.5.3-19 Language Code (ALC) Standards and References

