
EFFECTIVE DATE

(12-16-2021)

PURPOSE

(1) This transmits revised Internal Revenue Manual (IRM) 2.5.12, Systems Development, Design
Techniques and Deliverables. This IRM was developed to describe techniques for analyzing,
designing, and modeling system development software designs.

MATERIAL CHANGES
(1) Manual Transmittal signature, changed the title from Acting, Chief Information Officer signature to

Chief Information Officer for Nancy A. Sieger.

(2) 2.5.12.1.3 (7), Updated the role and responsibilities of the Customer Service Director

(3) 2.5.12.1.7, Added resource “The Gang of Four (GoF) Design Patterns Reference. Learning
Object-Oriented Design & Programming Version 2.0, January 10, 2017

(4) 2.5.12.2, Added System and Software Developer’s Best Practice Overview

(5) 2.5.12.2 (1), Added IRS system development and software development teams have many
responsibilities, for example:

• Gathering requirements from stakeholders
• Analyze, implement current and future system and software programs
• Mitigate risks for future product changes
• Implementing and updating Enterprise Life Cycle documentation (artifacts)
• Creating design and test plans
• Establishing the design and deployment of enhancements to the current IRS architecture
• Perform maintenance procedures for software programs

(6) 2.5.12.2.1, Added Enterprise Architecture (EA) Application Design Overview

(7) 2.5.12.2.1 (1), Added The goal of the application architecture section of the EA is to define a set of
architectural patterns from which projects may select in order to build and deploy their applications in
a manner that is consistent with the objectives of the IRS as an enterprise. Projects can choose from
a limited set of application architecture patterns to build application systems.

(8) 2.5.12.2.1 (2), Added Projects are expected to develop their own design level approaches, and
documentation based on the architecture guidelines provided in the Enterprise Architecture, included
updated EA hyperlink

(9) 2.5.12.2.1 (9), Corrected the word “work flow” to “workflow”

(10) Added explanation During 1994 four authors: Eric Gamma, Richard Helm, Ralph Johnson and John
Vlissides who are jointly known as the “Gang of Four ”(GOF) published a book titled Design Patterns
- Elements of Reusable Object-Oriented Software which started the concept of Design Pattern in
Software Development. Design patterns provide an industry standard approach to solving recurring
problems standard terminology and significance to each scenario

(11) 2.5.12.3.8 (1) (a - z) Added Software Design Patterns - Best Practices for Developers

(12) The best practices for developers using Design Patterns are as follows:

MANUAL
TRANSMITTAL 2.5.12

Department of the Treasury

Internal Revenue Service
DECEMBER 16, 2021

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12
Any line marked with a #
is for Official Use Only

a. Behavioral Patterns (Chain of Responsibility) - Use this pattern when:
• You need to process a notification using a hierarchical chain of objects
• Not every observer is created equally

b. For Chain of Responsibility Pattern implementation see

Chain of Responsibility Pattern Implementation

A Create an Interface for the chain which has the method
needed.

B
Specific classes in the chain must implement the Interface and
the specific classes constructor must set up the Interface
successor value (private value).

C Top of chain (last notified), has no successor defined

D
Each instance method defined must be set up to deal with
whatever event might be specific to that class in the chain.

E If it can’t handle it, it passes it along to the successor.method()

F Last method in chain must be able to handle event (in a generic
way if nothing else)

c. Behavioral Patterns (Iterator) - Use this pattern when:
• You want to access the elements of a collection without having to know any internal details
of the collection
• You are dealing with a collection of objects
• You are mixing collection types and need to access them in a standard way

d. For Iterator Pattern implementation see Figure 2.5.12-6

Iterator Pattern Implementation

A Create a classIterator that implements Iterator

• Give the class a local variable to store what is in the col-
lection (array, vector, etc)

• Add a local variable to keep track of where you are in the
collection

• Add the following methods: “next”, “hasNext”, and “remove”

• The method “hasNext” returns a Boolean (true if not at the
end of the collection)

• The method “next” returns the succeeding item from the
collection

The method“ remove” takes something out of the collection

Figure 2.5.12-1

e. Behavioral Patterns (Observer) - Use this pattern when:
• You have a group that needs to know when something happens (the subject lets the
observers know when something has happened)
• You need to send notifications to a series of objects
• You need to be able to modify who is observing at runtime

f. For Observer Pattern implementation see Figure 2.5.12-6:

Manual Transmittal Cont. (1)

2.5.12 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

Observer Pattern Implementation

A. Create a Subject (what is to be observed) Interface

• registerObserver(Observer o)
• removeObserver(Observer o)
• notifyObserver(Observer o)

B. Create an Observer Interface

• receiveNotice()

C. Class to be watched implements the Subject Interface

D. Class to do watching implements Observer Interface

F. registerObserver puts Observers into a Vector (removeObserver
takes them out)

G. When code needs to notify Observers, loop through the vector
and call the Observers receiveNotice() method (passing in
whatever is needed/expected)

Figure 2.5.12-2

g. Behavioral Patterns (Template) -

Note: Defines the skeleton of an algorithm leaving some steps to subclasses; however, if every
step needs to be customized then this pattern is pointless

Use this pattern when:
• You have an algorithm that is made up of multiple steps, and you want to customize some of
those steps
• If you have steps that are shared between various implementations of the algorithm

h. For Template Pattern implementation do as follows:
• Define abstract class with final method that calls all steps (functions)
• Define default behavior for steps in abstract class (public methods, not necessarily final)
• Add conditions to steps if necessary
• Extend abstract class, override method for steps that are different

i. Creational Patterns (Builder) -

Note: You no longer have control over the algorithm. The steps need to be customizable.

Use this pattern when:
• You need to build complex sequence of steps

j. For Builder Pattern implementation see Figure 2.5.12-7

Builder Pattern Implementation

A. Create an interface classBuilder

B. Define empty methods that must be implemented instances

Note: Usually actions to add/remove and a get class method

C. Create classBuilder classes for whatever things needs to be built
that implements the interface

Manual Transmittal Cont. (2)

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12
Any line marked with a #
is for Official Use Only

D. Individual classes need a class variable of itself that is set in the
public classBuildable call

E. Use an ArrayList or some other method to store the order of the
actions set by the client (using the add/remove methods).

Figure 2.5.12-3

k. Creational Patterns (Factory)

Note: Use to separate out parts of the code that are changing frequently and encapsulating it
in its own object (Connection objects, etc.)

Use this pattern when:
• Circumstances have gotten decentralized enough that many programmers who subclass
your factory class are overriding it so much that they’re changing it substantially

l. For Factory Pattern implementation do as follows:
• Build an abstract class (your base classFactory)
• Give your base “classFactory” any necessary abstract methods that must be implemented
• Create specific extensions of the “classFactory” to meet the needs

m. Creational Patterns (Flyweight) -

Note: Decompose large objects into generic, smaller objects that can be configured at runtime
to appear as the large objects. This can save on system resources.

Use this pattern when:
• The system has large, resource intensive objects, and you need to make the system less
resource intensive

n. For Flyweight Pattern implementation do as follows:
• Create a class that contains only the data you might need (modeled after the larger class)
• Ensure you have created multiple constructors for the class (to set initial values based on
the model of the data you need). Instead of setting everything, set only what is going to be
used
• Create your class as a singleton to ensure that only one instance of the Flyweight class is in
existence.

o. Creational Patterns (Singleton) -

Note: To save on resources, you can select certain classes to be set up so that only one
instance of your class exists.

Use this pattern when:
• You need to restrict the number of objects created because you want the share the data in
those objects
• You need to restrict resource usage (instead of creating numbers of large objects without
limit)
• You need a sensitive object whose data shouldn’t be accessed by multiple instances such as
a registry

p. For Singleton Pattern implementation do as follows:
• Create your class file with a static variable of the type of the class itself
• Ensure the variable is initialized to a new instance of the class file
• Ensure you that have created a public static synchronized method returning an instance of
your class (getInstance())
• Ensure you that have created the getInstance() method return the static variable

Manual Transmittal Cont. (3)

2.5.12 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

q. Creational Patterns (Strategy) :

Note: Separate out volatile code into algorithms that contain a complete task.

Use this pattern when:
• Volatile code exist that can be separated out of your application for easy maintenance
• You need to avoid confusing how to handle a task by having to split implementation code
over several inherited classes
• You need to change the algorithm that you use for a task at runtime

r. For Strategy Pattern implementation do as follows:
• Build an Interface to ensure all algorithms use the same methods
• All algorithms must implement the Interface
• The class must have a variable of the Interface; set using the specific algorithm needed for
the instance of the class

Note: Done with a “setInterface” method so that the algorithm changes at runtime.

s. Structural Patterns (Adapter)

Note: When you need to make incompatible objects talk to another, you use the exposed
methods of one class to feed a secondary class, which then feeds the data into the
second object’s exposed methods.

Use this pattern when:
• You need to fix the interfaces between two objects without having to change the objects
directly (common in store-bought stuff)
• If what the object exposes isn’t what you need, add an adapter to build what you need
• When you have legacy code that can’t be changed

t. For Adapter Pattern implementation do as follows:
• Define an Interface to the second class
• Define a classAdapter class using the interface
• This class needs to store the first class as a variable
• Build code that gets the first class values and adapts them to the second class values

u. Structural Patterns (Composites) - Use this pattern when:
• You want to create a tree-like structure and access the leaves in the same way as the
branches e.g., organization chart
• You are working with a collection of objects in a tree-like structure
• You are working with XML

v. For Composites Pattern implementation see

A. Create an abstract class that has an add method to add(abstract
class) and a getIterator method (to return an iterator in branch/
leaf implementations), but return nothing here.

B. Include any other methods that need to exist in the concrete
classes

C. Create any leafs for the tree that extends the abstract class

D. Build an Iterator class for the leaf to return on the getIterator
method

E. Create any branches that extends the abstract class

F. Build an Iterator class for the branches

Manual Transmittal Cont. (4)

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12
Any line marked with a #
is for Official Use Only

• As branches and leaves are both children of the abstract
class, you can create a collection to hold them (and the
branch can hold the leaf)

• When you call the other methods you defined, it will call
them for everything in the tree (assuming your method (like
print()) uses an iterator to go through everything)

Figure 2.5.12-4

w. Structural Patterns (Decorator) -

Note: Use wrapper code to extend core code (wrap your class in another class to give it new/
extended functionality).

Use this pattern when:
• You want to “decorate” the results of something in a class with something additional without
having to modify the base class for all instances

x. For Decorator Pattern implementation do as follows:
• Build an abstract class that extends your original class (classDecorator) that defines
method(s) that must exist in all derived classes
• Derived class (extends classDecorator) must have local variable to hold base class (set with
constructor)
• Decorator class calls method from base class, and extends it in some fashion (class.descrip-
tion() + decorator.description())

y. Structural Patterns (Facade) -

Note: Provides a wrapper to make original code more workable

Use this pattern when:
• A class interface is too hard to manipulate
• The code is poorly encapsulated
• You need the code to do “x, y, z” without a lot of intermediate steps
• You can’t rewrite the code to make it easier

z. For Facade Pattern implementation do as follows:
• Façade class wraps the difficult class (like a Decorator)
• Make a simple method to do what is needed with the difficult class
• Provide methods to access the difficult classes simple methods

(13) 2.5.12.3.9.1 (2), Corrected hyperlink for REPO Model Driven Requirements

(14) 2.5.12.4 (1), Included punctuation

(15) 2.5.12.4.1 (3 a b c), Corrected unbolded content

(16) Added Figure 2.5.12-1, Software Design Principles

(17) Added Figure 2.5.12-2, Top-down Design Approach

(18) Added Figure 2.5.12-3, Bottom-up Approach

(19) Added Figure 2.5.12-4, Illustrates Heuristic Evaluation

(20) Added Figure 2.5.12-5, Illustrates Module Coupling

(21) Added Figure 2.5.12-6, Iterator Pattern Implementation

Manual Transmittal Cont. (5)

2.5.12 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

(22) Added Figure 2.5.12-7, Observer Pattern Implementation

(23) Added Figure 2.5.12-8, Builder Pattern Implementation

(24) Added Figure 2.5.12-9, Composites Pattern

(25) Added Figure 2.5.12-10, Object-Oriented Analysis and Object-Oriented Design Requirements

(26) Added Figure 2.5.12-11, Illustration of Object-Oriented Design (OOD) Example

(27) Added Figure 2.5.12-12, Illustrates Hierarchical Structure Chart

(28) Added Figure 2.5.12-13, Structure Chart 2

(29) Added Figure 2.5.12-14, Data Flow Diagram that resulted from Transform Analysis

(30) Added Figure 2.5.12-15, Illustrates First-Level Module Factoring

(31) Added Figure 2.5.12-16, Illustrates Structure Chart for Transform-centered System

(32) Added Figure 2.5.12-17, Illustrates Transaction-Centered System Data Flow Diagram

(33) Added Figure 2.5.12-18, Illustration of Transaction Processor

(34) Added Figure 2.5.12-19, Illustration of Module Naming Conventions

(35) Added Figure 2.5.12-20, Illustration of Module Numbering

(36) Added Figure 2.5.12-21, Illustration of Multi-Page Structure Charts

(37) Added Figure 2.5.12-22, Illustration of Multi-Page Structure Chart 1

(38) Added Figure 2.5.12-23, Illustration of Multi-Page Structure Chart 2

(39) Added Figure 2.5.12-24, Illustration of Module Connections

(40) Added Figure 2.5.12-25, Illustration of Module Calls

(41) Added Figure 2.5.12-26, Illustration of Module Iteration

(42) Added Figure 2.5.12-27, Illustration of Lexical Inclusion

(43) Added Figure 2.5.12-28, Illustration of Pre-Existing Module Notation used elsewhere in the system

(44) Added Figure 2.5.12-29, Symbol for File Display

(45) Added Figure 2.5.12-30, Illustration of RANGE-TABLE is common to modules 1 and 3

(46) Added Figure 2.5.12-31, Illustration of Data and Control Parameters

(47) Added Figure 2.5.12-32, Illustration of Structure Chart with Labeled Parameters

(48) Added Figure 2.5.12-33, Grouping Criteria for Packaging

EFFECT ON OTHER DOCUMENTS

IRM 2.5.12 dated 06-11- 2020 is superseded, and supplements IRM 2.5.1 System Development and IRM
2.5.3 System Development, Programming and Source Code Standards.

Manual Transmittal Cont. (6)

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12
Any line marked with a #
is for Official Use Only

AUDIENCE

The audience intended for this transmittal is personnel responsible for engineering, developing, or
maintaining Agency software systems identified in the Enterprise Architecture. This engineering, development,
and maintenance include duties performed by government employees, contractors, and organizations having
contractual arrangements with the Internal Revenue Service (IRS).

Nancy A. Sieger

Chief Information Officer

Manual Transmittal Cont. (7)

2.5.12 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

Manual Transmittal2.5.12

Design Techniques and Deliverables

Table of Contents Table of Contents

2.5.12.1 Program Scope and Objectives

2.5.12.1.1 Background

2.5.12.1.2 Authority

2.5.12.1.3 Roles and Responsibilities

2.5.12.1.4 Program Management and Review

2.5.12.1.5 Acronyms/Terms

2.5.12.1.6 Terms/Definitions

2.5.12.1.7 Related Resources

2.5.12.2 System and Software Developer’s Best Practice Overview

2.5.12.2.1 Enterprise Architecture (EA) Application Design Overview

2.5.12.3 Software Design

2.5.12.3.1 Design Characteristics

2.5.12.3.2 Software Design and Structure

2.5.12.3.2.1 Software Design Levels

2.5.12.3.3 Software Modeling

2.5.12.3.4 Software Design Refinement Principles

2.5.12.3.5 Heuristic Evaluation

2.5.12.3.6 Modular Decomposition

2.5.12.3.7 Software Design Patterns Overview

2.5.12.3.8 Software Design Patterns - Best Practices for Developers

2.5.12.3.9 Object-Oriented Analysis and Design Process

2.5.12.3.9.1 Use Case Diagrams

2.5.12.4 User Interface (UI) Design Principles

2.5.12.4.1 User Interface Design Process

2.5.12.4.2 Design Wireframes and Mock-ups

2.5.12.4.2.1 Prototype Design Best Practices

2.5.12.4.2.2 Prototyping Benefits Throughout the Enterprise Life Cycle (ELC)

2.5.12.5 Structure Chart Overview

2.5.12.5.1 Structure Chart Best Practices

2.5.12.5.2 Transform Analysis/Transaction Analysis Overview

2.5.12.5.2.1 Transform Analysis Best Practices

2.5.12.5.2.2 Transaction Analysis Best Practices

2.5.12.5.2.3 Information Specification

2.5.12.5.2.4 Structure Chart Refinement

2.5.12.5.2.4.1 Cohesion

Part 2
Chapter 5 Systems Development

IRM 2.5.12

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12
Any line marked with a #
is for Official Use Only

2.5.12.5.2.4.2 Coupling

2.5.12.6 Structure Chart Conventions and Standards

2.5.12.6.1 Module Numbering

2.5.12.6.1.1 Multiple Page Structure Charts

2.5.12.6.1.2 Pre-existing (Common) Modules

2.5.12.6.2 Module Notations

2.5.12.6.2.1 Special Module Call Notation

2.5.12.6.2.1.1 Decision

2.5.12.6.2.1.2 Iteration

2.5.12.6.2.2 Lexical Inclusion

2.5.12.6.2.3 Pre-Existing Module Notation

2.5.12.6.2.4 File Notation

2.5.12.6.3 Structure Chart Common Environment

2.5.12.6.4 Structure Chart Interface Parameters (Couples)

2.5.12.6.4.1 Interface Parameter Names

2.5.12.6.4.2 Identifying Data and Control Parameters

2.5.12.6.5 Sorts

2.5.12.6.6 Analysis/Design Cross-Reference List

2.5.12.7 Structure Chart Module Specification

2.5.12.7.1 Pseudocode

2.5.12.7.1.1 Pseudocode Best Practices

2.5.12.7.2 Module Specification Development/Standards

2.5.12.7.3 Pseudocode-Conventions/Standards

2.5.12.7.3.1 Reusable (Common) Modules

2.5.12.7.3.2 Organization and Maintenance

2.5.12.8 Structure Charts Packaging and Preprogramming Considerations

2.5.12.9 Structured Design/Programming Interface - Structure Charts

2.5.12.10 Software Release/Maintenance/Evolution

Exhibits
2.5.12-1 Example of a Structure Chart

2.5.12-2 Example of Page 1 of a Structure Chart using a Parameter Table

2.5.12-3 Contents and Format of Analysis/Design Cross-Reference List

2.5.12-4 Acronym/Terms

2.5.12-5 Terms/Definitions

Part 2
Chapter 5 Systems Development

IRM 2.5.12

2.5.12 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

2.5.12.1
(12-16-2021)
Program Scope and
Objectives

(1) Scope - This IRM is a guidance for structured design techniques that involves
the description, specification, and hierarchical arrangement of software compo-
nents designed to be small, easily managed, independent modules in terms of
their inputs and outputs. Structured design describes a set of classic design
methodologies. These design ideas work for a large class of problems. The
original structured design idea, stepwise refinement, requires decomposing of
the problem from the top down, focusing on the control flow of the solution. It
also relates closely to some of the architectures: the main program-subroutine
and pipe-and-filter architectures. Modular decomposition is the immediate
precursor to the modern object-oriented methodologies and introduced the
ideas of encapsulation and information hiding.

(2) Structured Design - This describes a set of classic design methodologies that
work for a large class of problems. The design concept behind stepwise refine-
ment, is to decompose the problem from the top down, focusing on the control
flow of the solution. It also pertains to some of the architectures, the main
program subroutine, and pipe-and-filter architectures. Modular decomposition is
the predecessor to object-oriented methodologies, and initiated the concepts of
encapsulation and information hiding.

(3) Structured Programming and Design Concept - This provides the software
designer with a foundation from which more of the following methods can be
applied:

a. Abstraction - Act or process of representing essential features without
including the background details or explanations.

b. Control Hierarchy - A program structure that represents the organization
of a program component and implied a hierarchy of control.

c. Data Structure - Description of the logical relationship between individual
elements of data.

d. Modularity - Software architecture is divided into elements called
modules.

e. Software Architecture - Construct of the software and the ways in which
that structure provides conceptual integrity for a system.

f. Refinement - Use a notation that’s natural to the problem space. Avoid
using a programming language for description. Each refinement implies
several design decisions based on a set of design criteria. These criteria
include efficiency of time and space, clarity, and regularity of structure
(simplicity). Refinement can be accomplished in two ways: top down or
bottom-up.

g. Information Hiding - Modules must be designed so that information
contained within a module is inaccessible to modules that do not have a
need for the information.

h. Structural Partitioning - This program structure can be divided horizon-
tally and vertically. Horizontal partitions define separate branches of
modular hierarchy for each major program function. Vertical partitioning
pertains to work that is distributed top down in the program structure.

i. Top Down/Stepwise Refinement - Characterized by moving from a
general description of the problem to more detailed statements of what
individual modules or routines do.

(4) Software Design and Structure Objectives - All software designs must
reflect the following expectations:

Design Techniques and Deliverables 2.5.12 page 1

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.1
Any line marked with a #
is for Official Use Only

a. Compatibility: The software must be designed for interoperability with
another product i.e., backward compatibility with an older version of the
same product.

b. Extensibility: An internal structure and dataflow that is minimally or not
affected by new or modified functionality e.g., refactoring or modifying the
original source code. When adding new capabilities, you must not create
major changes to the underlying architecture.

c. Fault-tolerance: The software must be resistant to component failure,
and have the ability to recover if failure does occur.

d. Maintainability: Ease of bug fixes or code modification which is normally
a combination of modularity and extensibility processes.

e. Modularity: Independent software components leading to better main-
tainability i.e., the components can be implemented and tested in
isolation.

f. Performance: Software must perform all tasks within a timeframe that is
acceptable for IRS: users, management, and stakeholders without overex-
tending memory limits creating lag-time of the application system.

g. Portability: Application software should be reusable across a number of
different conditions e.g., processor types, hardware platforms, (including
clients, servers, network connectivity devices, input and output devices)
and environments.

h. Reliability/Robust: This is the primary goal in software quality design
and structure. The software must be failure-free, able to perform the
required function(s), and within the timeframe specified by IRS
leadership/management. Software reliability affects the complete system’s
reliability. A complete system includes all of the associated equipment,
facilities, material, computer programs, firmware, technical documenta-
tion, services, and personnel required for operations and support to the
intended environment.

i. Reusability: The software must have the capability of using some or all
aspects of preexisting software in other projects with minimal or no code
modifications.

j. High Scalability: The software must be able to handle increased loads,
and maintain its performance.

k. Security: The software must adhere to the Federal Information Security
Management Act (FISMA) standards, FIPS Pub 73, OWASP standards,
IRM 10.8.1 Security, Privacy and Assurance, Information Technology,
Policy and Guidance, withstand agency regression testing, AppScan
testing, and any additional Federal application security standards and/or
IRS security requirements for application vulnerabilities.

l. Usability: The software user interface must be usable for all target end-
users or audience.

(5) Purpose: This manual establishes standards, guidelines, and other controls for
designing software. This manual describes techniques for structuring a
program and specifying the modules that constitute the program structure. This
manual is also distributed to promote the development of software systems
that are easy to understand, change, and maintain. For system development
purposes, these controls may be used with any approved life cycle e.g.,
System Development Life Cycle (SDLC) and Enterprise Life Cycle (ELC). The
guidelines, standards, techniques, and other controls in this manual apply to all
software developed for the Internal Revenue Service.

(6) Audience: All IRS personnel responsible for engineering, developing, or main-
taining agency software systems identified in the Enterprise Architecture.

page 2 2.5 Systems Development

2.5.12.1 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

(7) Policy Owner: The current policy owner is the Acting, Chief Information Officer
(CIO).

(8) Program Owner: The Technical Integration Organization (TIO) Director is the
Program Owner.

(9) Primary Stakeholders: These can be other areas that are affected by these
procedures or have input to the procedures. The affects may include a change
in work flow, additional duties, change in established time frames, and similar
issues.

(10) Program Goals: The objective of structured software designs is to provide a
better understanding of how software problems will be solved based on a
strategy where the problem is broken into several small problems, and each
small problem is individually solved until the whole problem is solved. Trans-
forming user software requirements into the best possible quality and secure
design before implementing the targeted solution.

2.5.12.1.1
(12-16-2021)
Background

(1) Structured programming (modular programming) began during the 1950s with
the emergence of the ALGOL 58 and 60 languages. Before that period, low
level machine languages like Fortran and other low level machine languages
used goto statements or its equivalent. Goto statements allowed the computer
to diverge from the sequential execution of the program instructions, and was
considered to be a very profound construction. However, as complex code
grew goto statements became more difficult to maintain. During 1966, Dijkstra
recognized the complexity of programs was because of the overuse of the
“goto” statement (Dijkstra, E.W., “Got To Considered Harmful”, Communication
of the ACM, March 1966). During the early 1970s, after Dijkstra demonstrated
that any program structure that was created with go statements could be sim-
plified with the sequence-repetition-decision structure Structured Programming
was implemented.

(2) The original structured design idea, stepwise refinement was also initiated.
This pertains to decomposing the problem from the top down, focusing on the
control flow of the solution. It also relates closely to some of the architectures,
particularly the main program-subroutine, and pipe-and-filter architectures.
Modular decomposition is the immediate precursor to the modern object-
oriented methodologies because it introduces the concepts of encapsulation
and information hiding. These ideas are the basics of your design toolbox.

(3) Initially problem solving was taught in a top-down structured manner, where
you begin with the problem statement, and attempt to break the problem down
into a set of solvable sub-problems. The process continues until each sub-
problem is small enough to be either trivial or very easy to solve. This
technique is called structured programming and design.

2.5.12.1.2
(12-16-2021)
Authority

(1) IRM 2.5.1 System Development, establishes the System Development program
for the IRS.

(2) IRM 10.8.1 Security, Policy and Guidance

(3) IRM 10.5.1 Security, Privacy and Assurance, Privacy and Information Protec-
tion

(4) Treasury Inspector General Tax Administration (TIGTA)

Design Techniques and Deliverables 2.5.12 page 3

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.1.2
Any line marked with a #
is for Official Use Only

(5) Federal Information Security Modernization Act (FISMA) of 2014

(6) Taxpayer First Act (TFA) legislation

(7) Government Accountability Office (GAO)

(8) 21st Century Integrated Digital Experience Act (IDEA), December 2018

(9) Presidential American Technology Council, 2017

(10) Director of Office of Management and Budget (OMB)

(11) Secretary of Commerce for Modernization of Federal IT

(12) Federal Information Processing Standards (FIPS) Pub 73, Guidelines for
Security of Computer Applications

(13) Federal Information Processing Standards (FIPS) 200, Minimum Security Re-
quirements for Federal Information and Information Systems, March 2006

(14) Clinger-Cohen Act (CCA) 1996, Title 40

2.5.12.1.3
(12-16-2021)
Roles and
Responsibilities

(1) Information Technology (IT), Cybersecurity: Cybersecurity manages the IRS
IT Security program in accordance with the Federal Information Security Man-
agement Act with the goal of delivering effective and professional customer
service to business units and support functions within the IRS. These proce-
dures are done as the following:

a. Provide valid risk mitigated solutions to security inquisitions.
b. Respond to incidents quickly, and effectively in order to eliminate risks/

threats.
c. Ensure all IT security policies and procedures are actively developed,

and updated.
d. Provide security advice to IRS constituents, and proactively monitor IRS

robust security program for any required modifications or enhancements.

(2) Applications Development (AD): AD is responsible for building, testing, deliv-
ering, and maintaining integrated information applications systems, e.g.,
software solutions, to support modernized systems and production environment
to achieve the mission and objectives of the Service. Additional, AD is respon-
sible for the following:
• AD works in partnership with customers to improve the quality of and

deliver changes to IRS information systems products and services
• Establishes and maintains rigorous contract and fiscal management,

oversight, quality assurance, and program risk management processes to
ensure that strategic plans and priorities are being met
• Maintains the effectiveness and enhance the integration of IRS installed

base production systems and infrastructure while modernizing core business
systems and infrastructure
• Provides quality assessment/assurance of deliverables and processes

(3) Application Development’s chain of command is the following:

a. Commissioner: Oversees and provides overall strategic direction for the
IRS. The Commissioner’s and Deputy Commissioner’s main focus is for
the IRS’s services programs, enforcement, operations support, and orga-
nizations. Additionally, the Commissioner’s vision is to enhance services

page 4 2.5 Systems Development

2.5.12.1.3 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

for the nation’s taxpayers, balancing appropriate enforcement of the
nation’s tax laws while respecting taxpayers’ rights.

b. Deputy Commissioner, Operation Support (DCOS): Oversees the op-
erations of Agency-Wide Shared Services: Chief Financial Officer, Human
Capital Office, Information Technology, Planning Programming and Audit
Oversight and Privacy, and Governmental Liaison and Disclosure.

c. Chief Information Officer (CIO): The CIO leads Information Technology,
and advises the Commissioner on Information Technology matters,
manages all IRS IT resources, and is responsible for delivering and main-
taining modernized information systems throughout the IRS.

d. Application Development (AD) Associate Chief Information Officer
(ACIO): The AD ACIO reports directly to the CIO; oversees and ensures
the quality of: building, unit testing, delivering and maintaining integrated
enterprise-wide applications systems to support modernized and legacy
systems in the production environment to achieve the mission of the
Service.

e. Deputy AD Associate CIO (ACIO): The Deputy AD ACIO reports directly
to the AD ACIO, and is responsible for:
• Leading all strategic priorities to enable the AD Vision, IT Technology
Roadmap and the IRS future state
• Executive planning, and management of the development organiza-
tion which ensures all filing season programs are developed, tested, and
delivered on-time and within budget

(4) AD has the following Domains:

a. Compliance Domain
b. Corporate Data Domain
c. Customer Service Domain
d. Data Delivery Service (DDS) Domain
e. Delivery Management; Quality Assurance (DMQA) Domain
f. Identity & Access Management (IAM) Organization Domain
g. Internal Management Domain
h. Submission Processing Domain
i. Technical Integration Organization (TIO) Domain

(5) Director, Compliance: Provides executive direction for a wide suite of Compli-
ance domain focused applications and oversee the IT Software Development
organization to ensure the quality of production ready applications.

a. Directs and oversees a unified cross-divisional approach to compliance
strategies needing collaboration pertaining for the following:

• Abusive tax avoidance transactions needing a coordinated response
• Cross-divisional technical issues
• Emerging issues
• Service-wide operational procedures

(6) Director, AD Corporate Data: Directs and oversees the provisioning of au-
thoritative databases, refund identification, notice generation, and reporting.

(7) Director, Customer Service: Directs and oversees Customer Service Support
for service and communication with internal and external customers and
providing taxpayers with self-service online. Services provided are as follows:

Design Techniques and Deliverables 2.5.12 page 5

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.1.3
Any line marked with a #
is for Official Use Only

a. Customer Service Domain’s applications and systems provide:
• Tax law assistance
• Taxpayer education
• Access to taxpayer account data
• Maintenance of modernized information systems that meet the cus-
tomer’s needs for researching, updating, analyzing, and managing
taxpayer accounts

b. Services to internal and external customers are provided through five
primary means:
• Centralized Contact Centers (for telephone, written, and electronic
inquiries)
• Self-service applications (via the telephone and Internet)
• Field Assistance (for walk-in assistance)
• Web Services
• Management of Taxpayer Accounts

(8) Director, Data Delivery Services: Oversees and ensures the quality of data
with repeatable processes in a scalable environment. The Enterprise Data
Strategy is to transform DDS into a data centric organization dedicated to
deliver Data as a Service (DaaS) through:

• Innovation - New methods, discoveries
• Renovation - Streamline or automate
• Motivation - Encourage and enable individuals

(9) Director, Delivery Management & Quality Assurance (DMQA):

• Executes the mission of DMQA by ensuring AD has a coordinated,
cross-domain, and cross-organizational approach to delivering AD
systems and software applications

• Reports to the AD ACIO, and chairs the AD Risk Review Board
• Chairperson, Configuration Control Board
• Government Sponsor, Configuration Control Board, see IRM 2.5.1

System Development
• For additional information concerning AD roles, see IRM 2.5.1

(10) Director, Identity & Access Management (IAM) Organization: Provides
oversight and direction for continual secure online interaction by verification
and establishing an individual’s identity before providing access to taxpayer
information “identity proofing” while staying compliant within federal security
requirements.

(11) Director, Internal Management: Provides oversight for the builds, tests, deliv-
eries, refund identification, notice generation, and reporting.

(12) Director, Submission Processing: Provides oversight to an organization of
over 17,000 employees, comprised of: a headquarters staff responsible for de-
veloping program policies and procedures, five W&I processing centers, and
seven commercially operated lockbox banks. Responsible for the processing of
more than 202 million individual and business tax returns through both elec-
tronic and paper methods.

(13) Director, Technical Integration: Provides strategic technical organization
oversight ensuring applicable guidance, collaboration, consolidation of technical
integration issues, and quality assurance for the Applications Development
portfolio.

page 6 2.5 Systems Development

2.5.12.1.3 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

2.5.12.1.4
(12-16-2021)
Program Management
and Review

(1) All AD application design and structure documentation are artifacts for Enter-
prise Architecture Enterprise Life-cycle are maintained on the ITPAL
SharePoint site.

(2) Quality reviews for application design and structure are conducted and tracked
by the AD Quality Assurance domain and the Enterprise Architecture domain.

2.5.12.1.5
(12-16-2021)
Acronyms/Terms

(1) See Exhibit 2.5.12-4 for Acronyms/Terms.

2.5.12.1.6
(12-16-2021)
Terms/Definitions

(1) See Exhibit 2.5.12-5 for Terms/Definitions.

2.5.12.1.7
(12-16-2021)
Related Resources

(1) John F. Dooley, Software Development, Design and Coding, 2017, https://
doi.org/10.1007/978-1-4842-3153-1_7

(2) NIST Special Publication SP 800-64, Revision 2, Security Considerations in the
System Development Life Cycle (SDLC)

(3) NIST SP 800-53 Rev 4

(4) IEEE Standard for Information technology, System Design, Software Design
Descriptions

(5) IEEE 12207-2017 - ISO/IEC/IEEE International Standard, Systems and
software engineering, Software Life Cycle Processes

(6) ISO/IEC 27034:2011+ - Information Technology, Security Techniques - Applica-
tion Security

(7) Software Reliability Review, The R & M Engineering Journal, Volume 23,
Number 2, June 2003

(8) Amoedo, Raphael. Achieving a Mature Software, 2019. ISBN:

(9) Tutorials Point website, https://www.tutorialspoint.com/software_engineering/
software_requirements.htm.

(10) Martin, Robert C.. Clean Architecture: A Craftsman’s Guide To Software
Structure and Design, 2018. ISBN-13:978-0-13-449416-6, ISBN: 10:0-13-
449416-4 https://www.informit.com

(11) Dooley, John F. Integrated Talent Management (ITM) training - Software Devel-
opment, Design and Coding: Patterns, Debugging, Unit Testing, and
Refactoring, Second Ed. 2017.

(12) Java T Point. website Module Coupling: Coupling and Cohesion https://
www.javatpoint.com/software-engineering-coupling-and-cohesion

(13) J.F. Dooley, Software Development, Design and Coding, website https://doi.org/
10.1007/978-1-4842-3153-1_7, ISBN: 9781484231531

Design Techniques and Deliverables 2.5.12 page 7

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.1.7
Any line marked with a #
is for Official Use Only

https://doi.org/10.1007/978-1-4842-3153-1_7
https://doi.org/10.1007/978-1-4842-3153-1_7
https://www.tutorialspoint.com/software_engineering/software_requirements.htm
https://www.tutorialspoint.com/software_engineering/software_requirements.htm
http://www.informit.com
https://www.javatpoint.com/software-engineering-coupling-and-cohesion
https://www.javatpoint.com/software-engineering-coupling-and-cohesion
Software Design and Coding
Software Design and Coding

(14) The Gang of Four (GoF) Design Patterns Reference. Learning Object-Oriented
Design & Programming Version 2.0, January 10, 2017 http://www.w3sdesign.
com/

2.5.12.2
(12-16-2021)
System and Software
Developer’s Best
Practice Overview

(1) IRS system development and software development teams have many respon-
sibilities, for example:

• Gathering requirements from stakeholders
• Analyze, implement current and future system and software programs
• Mitigate risks for future product changes
• Implementing and updating Enterprise Life Cycle documentation

(artifacts)
• Creating design and test plans
• Establishing the design and deployment of enhancements to the current

IRS architecture
• Perform maintenance procedures for software programs

(2) Because system and software development involves various technical environ-
ments and personnel roles, standard best practices must be formulated and
consistently used for optimal quality of agency IT product outcomes.

2.5.12.2.1
(12-16-2021)
Enterprise Architecture
(EA) Application Design
Overview

(1) The goal of the application architecture section of the EA is to define a set of
architectural patterns from which projects may select in order to build and
deploy their applications in a manner that is consistent with the objectives of
the IRS as an enterprise. Projects can choose from a limited set of application
architecture patterns to build application systems.

2.5.12.3
(12-16-2021)
Software Design

(1) Software architecture is the first step in producing software design. Software
architecture is not operational software. It is a representation that provides you
as a software engineer, developer or designer with the following advantages:

a. Enables the developer to analyze, and see the effectiveness of the
design early as stated in requirements.

b. Risks are reduced associated with the construction of the software.

(2) Software design is a process of defining software methods, functions,
structure, and interaction of your code so that the resulting functionality will
satisfy customer requirements. A good and practical approach to software
design is to devise a simplistic design and implementation, and extending/
refactoring it gradually to include more of the requirements. Your software
design must include a description of the overall architecture: hardware,
databases, and third party frameworks your software will use or interact with,
and is the big picture of what is running where and how all the parts interact.

(3) Software is a collection of executable programming code, associated libraries
and documentations. When made for a specific requirement is called a
software product. The process of developing a software product using software
engineering principles and methods is called Software Evolution.

page 8 2.5 Systems Development

#
#
#
#
#

2.5.12.2 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

http://www.w3sdesign.com/
http://www.w3sdesign.com/

2.5.12.3.1
(12-16-2021)
Design Characteristics

(1) Your software design must include all Application Programming Interfaces that
are used by your code or by external code that calls your code.

(2) Regardless of the size of your project or what process is used for your design,
all software designs must have specific characteristics. You must adhere to this
list of principles as you consider your design.

a. Fitness of Purpose: Your design must satisfy the requirements within
the constraints of the platform on which the software will be running.
Don’t add any new requirements as you go—the customer shall provide
the requirements.

b. Separation of Concerns (Modularity): Separate out functional pieces of
your design cleanly in order to simplify ease of maintenance as in the
following:
• Identify the parts of your design that are likely to change within accor-
dance to your customer’s project requirements e.g., business rules and
user interfaces can change.

c. Simplicity: Use the “KISS” principle (Keep It Simple and Straightfor-
ward), you must keep your design as simple as possible. If needed, add
more modules or classes to your design to create more simplicity. Sim-
plicity also applies to interfaces between modules or classes. Simple
interfaces allow other developers to see the data and control flow in your
software design. In agile this is called refactoring.

d. Ease of Maintenance: Create a well understood software design so it is
more flexible to change. Errors occur at all phases of the development
process: requirements, analysis, design, coding, and testing. The easier
to understand your design, the easier it will be to isolate and fix errors.

e. Loose Coupling:
• Important for isolating changes to modules or classes.
• When separating your design into modules—or in object-oriented
design, into classes—the degree to which the classes depend on each
other is called coupling. Tightly coupled modules may share data or pro-
cedures. This means that a change in one module is much more likely to
lead to a required change in the other module. This increases the main-
tenance burden, and makes the modules more likely to contain errors.
Loosely coupled modules are connected solely by their interfaces. Any
data they both needs must be passed between procedures or methods
via an interface.
• Loosely coupled modules hide the details of how they perform opera-
tions from other modules sharing only the interfaces. This lightens the
maintenance burden because a change to how one class is implemented
will not affect how another class operates as long as the interface is
unvarying.

f. High Cohesion: This is the counterpart of loose coupling. Cohesion
within a module is the degree to which the module is self-contained with
regard both to the data it holds, and the operations that act on the data. A
class that has high cohesion has all the data it needs defined within the
class template. Any object that is instantiated from the class template is
very independent, and just communicates with other objects via the
published interface.

g. Extensibility: Create your design to allow easier addition of new features
e.g., software is never really finished because after a release of a
product the customer normally request additional or modification of
features.

Design Techniques and Deliverables 2.5.12 page 9

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.3.1
Any line marked with a #
is for Official Use Only

h. Ease of Portability: Because of various IT platforms within the IRS,
software or applications must have the capability of being easily ported to
other platforms. The issues involved with porting software include:
operating system issues, hardware architecture and user interface issues.

(3) Software design is heuristic, and is done using a set of ever-changing heuris-
tics (rule of thumb) that each designer acquires over the course of time.

2.5.12.3.2
(12-16-2021)
Software Design and
Structure

(1) Structured design is a technique that involves the description, specification,
and hierarchical arrangement of software components designed to be small,
easily managed, independent modules conceived in terms of their inputs and
outputs.

(2) Structure charts and module specifications are tools used in structured design
for documenting the design of a system. A mature software product is software
that has all of these features:

• Reliability - The software must do what has been designated.
• Stable - Software has minimal, if any bugs.
• Secure - The software must be designed with concern for vulnerabili-

ties, and must be integrated with security safeguards according to
federal and industry application security standards: IRM 10.8.1, OWASP,
and NIST SP 800-53 Rev 4.

• Flexible - The software must be designed in a way that an update or
new feature will not break the functionality.

• Robust - Must be fail-proof with user input and events.

(3) To obtain mature software, the following appropriate development process is
required:

a. Ensure all software is written with clean code, and is well structured.
b. Ensure all software is well tested (Peer testing, Unit test, Integration test,

and System test). See IRM 2.127.1 Testing Standards and Procedures -
IT Test Policy.

c. All software must have Version Control (VC) applied: This is a central
server (repository) versioning system that records changes to a file or set
of files over time so that you can recall specific versions later. The
benefits of using version control are listed below:
• VC has the ability of restoring previous versions of the system
• VC supports code comparison
• VC can provide full management of changes
• VC supports code integration

d. Build and automate software deployments.
e. Ensure there is a simple process flow between creation and deployment.

Processes must be optimized to eliminate bottlenecks to systems.

(4) Pre-Design Phase - Processes necessary before implementing the Design
phase:

a. Feasibility Study - An analyst must perform a detailed study focusing on
the desired requirements and goals of the organization. This study will
determine whether a practical software product can be created based on:
• Cost constraints
• Cost per value and objectives
• Analyzing the technical aspects of the project for its usability, maintain-
ability, productivity, and system integration capability

page 10 2.5 Systems Development

2.5.12.3.2 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

Note: The output for this phase is the Feasibility Study report of recommendations,
and is uploaded to the ITPAL SharePoint site as an artifact for: Require-
ments Gathering, System Requirements Specification (SRS), and Software
Requirements Validation.

2.5.12.3.2.1
(12-16-2021)
Software Design Levels

(1) Software design has three levels of results:

a. Architectural Design - The architectural design is the highest abstract
version of the system. This design identifies the software as a system
with many components interacting with each other. At this level the
designer(s) focus on the proposed solution domain.

b. High Design - The high-level design removes the ‘single entity-multiple
component’ concept of architectural design into less-abstracted view of
sub-system and modules, and displays their interaction with each other.

c. Detailed Design - Detailed design pertains to the implementation part of
what is seen as a system and its sub-system in the previous two designs.
This is more detailed towards modules, and their implementations, and
also describes logical structure of each module, and their interfaces to
communicate with other modules.

2.5.12.3.3
(12-16-2021)
Software Modeling

(1) Software modeling addresses the entire software design including the inter-
faces, interactions with other software, and all the software methods. Software
models are ways of articulating a software design. For object-oriented
software, an object modeling language such as Unified Modeling Language
(UML) is used to develop and articulate the software design. In most cases, a
modeling language is used to develop the design, not just to capture the
design after it is complete. This allows the designer to try different designs,
and decide which will be best for the final solution. There are numerous
approved modeling tools within the IRS, some tools for developers or Systems
Architects are:

• Unicom System Architect (Formally Rational System Architect) -
System Architect is an enterprise architecture tool that enables you to
build and automatically generate data-driven views of your organiza-
tion’s enterprise architecture. This is also a meta-data discovery and
management tool that enables you to extract, explore and analyze en-
terprise application meta-data. Additionally, this tool is used to build
architectures using different frameworks: The Open Group Architecture
Framework (TOGAF), Department of Defense Architecture Framework
(DoDAF), and North Atlantic Treaty Organization (NATO) Architecture
Framework (NAF).

• The Open Group Architecture Framework (TOGAF) Architecture De-
velopment Method (ADM) - TOGAF is an architectural framework, and
is a valuable tool for developing a wide range of different IT enterprise
architectures that meets the needs of the customer. TOGAF enables
you to design, evaluate, and build the right architecture aligning IT to
the business initiatives. TOGAF is a high level approach to design. It is
typically modeled at four levels: Business, Application, Data, and Tech-
nology, and relies heavily on modularization, standardization, and
already existing, proven technologies and products.

• Structure Charts - Currently structure charts are normally created for
IRS mainframe systems, and are used to graphically model the
hierarchy of processes within a system. Through the hierarchical format,

Design Techniques and Deliverables 2.5.12 page 11

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.3.3
Any line marked with a #
is for Official Use Only

the sequence of processes, and the movement of data and control pa-
rameters can be mapped for interpretation.

2.5.12.3.4
(12-16-2021)
Software Design
Refinement Principles

(1) Software Refinement is a general approach of adding details to a software
design. To ensure your formal design method properties are met during refine-
ment:

• You must use a notation that is natural to the problem space.
• Avoid using a programming language for description when possible.
• The proposed steps must be easy to explain.
• The steps must make sense for the level of abstraction at which they

are used.

(2) Software design principles provide the technique of how to handle the com-
plexity of the design process effectively, see Software Design Principles figure
below:

Figure 2.5.12-5

(3) Top-Down Approach: Characterized by moving from a basic description of the
problem to detailed statements of what individual modules or routines do. Each
refinement entails several design decisions based on a set of design criteria.
Each refinement can proceed in two ways: top-down or bottom-up.

a. Stepwise Refinement (Top-Down Design): During stepwise refinement
software is progressively refined in small steps of a program specification
into a program. The principle behind this refinement is analyzing the
problem and trying to identify the outlines of a solution, and the pros and
cons of each possibility as the following:

page 12 2.5 Systems Development

2.5.12.3.4 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415027 Any line marked with a #

is for Official Use Only

Step 1. You must design the first level of details first.
Step 2. Do not use any language specific details.
Step 3. Create more details until you are at the lowest level.
Step 4. Formalize each level.
Step 5. Verify each level for correctness and clarity.
Step 6. Move to the next lower level to create the next set of refine-
ments.
Step 7. Repeat the process starting with step 1. Continue to refine the
solution at a lower level until it seems if it would be easier to code your
program than to decompose the solution.

(4) For a top-down illustration see the following figure:

Figure 2.5.12-6

(5) Bottom-up Approach: A bottom-up approach begins with the lower details and
moves up the hierarchy, and is suitable for an existing system. To view the
bottom-up illustration, select the figure below:

Design Techniques and Deliverables 2.5.12 page 13

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.3.4
35415025Any line marked with a #

is for Official Use Only

Figure 2.5.12-7

2.5.12.3.5
(12-16-2021)
Heuristic Evaluation

(1) The main goal of heuristic evaluation is to identify any problems associated
with the design of user interfaces. Heuristic evaluations are one of the most
informal methods of usability inspection in the field of human-computer interac-
tions. Use the following rules of thumb to complete the evaluation of a design:

a. Limit Module Size and Complexity: Keep your design modular, use the
projected number of statements to determine whether a module is too
small and must be combined with others, or a module is too large and
must be broken down into sub functions. For example, when a module is
coded during programming, module size may require 10-100 statements
for assembly language and 10 - 50 statements for a high-level language.
Breaking your design up into semi-independent pieces has the following
advantages:
• Keeps your design manageable (Work on one part at a time and leave
the others as black boxes)
• Helps with extensibility and maintainability
• Provides more checkpoints to measure progress
• Takes advantage of information hiding and encapsulation
• Allows for large programs to be written by several or different people

b. Disadvantages of Modularity:
• Compilation and loading time could be longer.
• More linkage required, and run-time might be longer.
• More source lines must be written.
• More documentation is required.

c. Limit the Span of Control (Fan-out) to 2-9 immediate subordinate
modules: The number of subordinates contributes to the complexity of a
module’s processing. Combine subordinates if the span of control is high.
If the span of control is low, compress the subordinate module into the
immediate higher, super ordinate module.

d. Maximize Fan-in: Fan-in is the use of a subordinate module by more
than one super ordinate module. This avoids duplicate code.

page 14 2.5 Systems Development

2.5.12.3.5 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415026 Any line marked with a #

is for Official Use Only

e. Verify Scope of Effect and Scope of Control: To ensure that modules
affected by a decision are subordinate to the module which makes the
decision. Modules, which are higher in the structure, must generally be
control modules. These control modules comprise decision logic to
control the invocation of their subordinates. Those at the lower level are
function modules that perform actual transformations of data such as
arithmetic calculations or report printing. Decompose a function into its
sub-functions, and then continue decomposition until atomic functions are
reached. Any module with subordinates must be control oriented instead
of performing the actual data transformations.

Figure 2.5.12-8

(2) Abstraction: Abstraction is creating detail at a higher level in the design
hierarchy whether you are doing object oriented design, creating interfaces and
abstract classes, or you’re doing a more traditional layered design, you want to
use abstraction. Abstraction is a key element of managing the complexity of a
large problem. By lifting away the details you can see the kernel of the real
problem.

(3) Encapsulation: Encapsulation refers to hiding/wrapping of data and functions
into one unit. It is the key principle of software development, and the object-
oriented design. Information hiding is the concept that you isolate
information—both data and behavior—in your program so that you can isolate
errors and changes; you also only allow access to the information via a well-
defined interface. For example:

• If you are not using object-oriented design, use libraries for hiding
behavior and use separate data structures (in C and C++) for hiding
state.

• If you are using object-oriented design, hide the details of a class, and
only allow communication and modification of data via a public interface.

Design Techniques and Deliverables 2.5.12 page 15

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.3.5
35415029Any line marked with a #

is for Official Use Only

2.5.12.3.6
(12-16-2021)
Modular Decomposition

(1) A module is a well-defined component of a software system, and a part of a
system that provides a set of services to other modules.

(2) There are three characteristics of modularity that are key to creating modular
programs:

a. Encapsulation: A bundled group of services defined by their data and
behaviors together as a module. This group of services must be
coherent, and clearly belong together e.g., like a function, a module must
do just one thing. The module then presents an interface to the user, and
that interface can access the services and data in the module. An
objective of encapsulating services and data is high cohesion. This
means modules whose elements are strongly related to each other.

b. Loose/Low Coupling: A good design has low coupling. The various
types of module coupling as seen in the following table IRM 2.5.12.3.6.:

Module Coupling and Ratings

Types of Module Coupling and Ratings

Simple Coupling Best

Non-structured data is passed through
parameter lists, and is best because it
allows the receiving module to structure
the data as needed, and decide what to
do with the data.

Stamp Coupling Good

Two modules are stamp coupled if they
communicate using composite data
items such as: structure, objects, etc.
When the module passes non-global
data structure or an entire structure to
another module, they are (stamp
coupled). For example, passing an
object in C++ language to a module.

Structured Data
Coupling

Good

Structured data is passed through a
parameter list. This coupling is good
because the sending module keep
control of the data formats.

Control Coupling Poor

Data from module A is passed to
module B, and the content of the data
tells module B what to do. This is not a
good form of coupling. A and B are too
closely coupled because A is controlling
how functions in module B will execute.

page 16 2.5 Systems Development

2.5.12.3.6 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

Types of Module Coupling and Ratings

Global Data
Coupling

Worst

Two modules share the same global
data.

Note: This violates a basic rule of en-
capsulation by having the
modules share data.

This invites unwanted side-effects and
ensures that at any given moment
during the execution, module A nor
module B will know what is in the
globally shared data.

Figure 2.5.12-9

c. Information Hiding: Information hiding is initiated only with Object
Oriented Programming (OOP), and objects with their attributes and
behaviors are hidden from other classes. This is not the same as encap-
sulation. The principles of information hiding are the following:
• All information related to an object is stored within the object
• Information is hidden from the outside world
• Information can only be changed by the object itself

2.5.12.3.7
(12-16-2021)
Software Design
Patterns Overview

(1) During 1994 four authors: Eric Gamma, Richard Helm, Ralph Johnson, and
John Vlissides who are jointly known as the “Gang of Four”(GOF) published a
book titled Design Patterns - Elements of Reusable Object-Oriented
Software which started the concept of Design Pattern in Software Develop-
ment. Design patterns provide an industry standard approach to solving
recurring problems. standard terminology and significance to each scenario.

(2) The GOF determined that design patterns are based on the following principles
of object oriented design:

• Program to an interface not an implementation
• Accept object composition over inheritance

(3) As referenced in the Gang of Four (GOF) Design Pattern reference book there
are 23 design patterns which are classified into three categories:

Design Techniques and Deliverables 2.5.12 page 17

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.3.7
35415024Any line marked with a #

is for Official Use Only

a. Creational Patterns: Design patterns provide a way to create objects
while hiding the creation logic, rather than instantiating objects directly
using new operator. This provides more flexibility when deciding which
objects must be created for a use cases. The most common design
patterns used for this category are:
• Abstract Factory Pattern - Allows the developer to separate out
parts of the code that are changing frequently and encapsulating it in its
own object (Connection objects, etc.)
• Builder Pattern - Allows the developer to build complex objects one
step at a time, and produce different representations of an object using
the same construction code
• Factory Pattern - Used when a superclass exist with multiple sub-
classes and based on input, you need to return one of the sub-class.
This pattern takes out the responsibility of the instantiation of a class
• Prototype Pattern - This pattern provides a mechanism to copy the
original object to a new object, and then modify it according to the needs.
Used when the object creation is costly, and requires a lot of time and
resources and you have a similar object already existing
• Singleton Pattern - This pattern involves a single class which is re-
sponsible to create an object while making sure that only single object
gets created
• Strategy Pattern - This allow grouping related algorithms under an
abstraction, which allows switching out one algorithm or policy for
another without modifying the client from the client program to the factory
class

b. Structural Patterns: Pertains to class and object composition. The
concept of inheritance is used to compose interfaces and define ways to
compose objects to obtain new functionalities. The most common design
patterns used for this category are:
• Adapter Pattern - This pattern is used so that two unrelated inter-
faces can work together. The object that joins these unrelated interfaces
is called an “Adapter”
• Bridge Pattern - This pattern enables the separation of implementation
from the interface and is also known as “Handle” or “Body”
• Composite Pattern - This pattern is used when a part-whole hierarchy
must be implemented, e.g., a diagram made of other pieces such as
circle, square, triangle, etc.
• Decorator - This pattern allows a user to add new functionality to an
existing object without altering its structure and act as a wrapper to
existing class
• Facade Pattern - This pattern adds an interface to existing system to
hide its complexities
• Flyweight Pattern - Used when the creation of many objects of a
class is required. Since every object burns up memory space that can be
crucial for low memory devices, such as mobile devices or embedded
systems, the flyweight design pattern can be applied to reduce the load
on memory by sharing objects
• Proxy Pattern - Provides a placeholder for another object to control
access to it, or control access to a functionality

c. Behavioral Patterns: Concerned with algorithms and assigning responsi-
bilities to objects. The most common design patterns used for this
category are:
• Chain of Responsibility - Enables the developer to pass requests
along a chain of handlers

page 18 2.5 Systems Development

2.5.12.3.7 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

• Command Design Pattern - Turns requests into stand-alone objects
containing all the information about the request
• Iterator Design Pattern - Allows iteration through elements in a col-
lection without exposing the underlying representation
• Observer Design Pattern - Useful when you’re interested in the state
of an object, and need to get notifications whenever there is any change.
The object that watches the state of another object are called “Observer”
and the object that is being watched is called “Subject.”•
• Template Design Pattern - An abstract class exposes defined ways/
templates to execute its methods. Its subclasses can override the method
implementation as needed, but the invocation must be the same way as
defined by an abstract class

2.5.12.3.8
(12-16-2021)
Software Design
Patterns - Best Practices
for Developers

(1) Design patterns are very useful if applied during the right situation, and for ap-
propriate reasons. Design patterns are like customizable templates that can be
applied to programmers’ code regardless of programming language, and help
with common problems that arise within software design.

(2) The best practices for developers using Design Patterns are as follows:

a. Behavioral Patterns (Chain of Responsibility) - Use this pattern when:
• You need to process a notification using a hierarchical chain of
objects
• Not every observer is created equally

b. For Chain of Responsibility Pattern implementation see

Chain of Responsibility Pattern Implementation

A Create an Interface for the chain which has the method
needed.

B
Specific classes in the chain must implement the Interface and
the specific classes constructor must set up the Interface
successor value (private value).

C Top of chain (last notified), has no successor defined

D
Each instance method defined must be set up to deal with
whatever event might be specific to that class in the chain.

E If it can’t handle it, it passes it along to the successor.method()

F Last method in chain must be able to handle event (in a generic
way if nothing else)

c. Behavioral Patterns (Iterator) - Use this pattern when:
• You want to access the elements of a collection without having to
know any internal details of the collection
• You are dealing with a collection of objects
• You are mixing collection types and need to access them in a
standard way

d. For Iterator Pattern- For implementation see Figure 2.5.12-6

Design Techniques and Deliverables 2.5.12 page 19

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.3.8
Any line marked with a #
is for Official Use Only

Iterator Pattern Implementation

A Create a classIterator that implements Iterator

• Give the class a local variable to store what is in the col-
lection (array, vector, etc)

• Add a local variable to keep track of where you are in the
collection

• Add the following methods: “next”, “hasNext”, and “remove”

• The method “hasNext” returns a Boolean (true if not at the
end of the collection)

• The method “next” returns the succeeding item from the
collection

The method“ remove” takes something out of the collection

Figure 2.5.12-10

e. Behavioral Patterns (Observer) - Use this pattern when:
• You have a group that needs to know when something
happens (the subject lets the observers know when something has
happened)
• You need to send notifications to a series of objects
• You need to be able to modify who is observing at runtime

f. For Observer Pattern - For implementation see Figure 2.5.12-6:

Observer Pattern Implementation

A. Create a Subject (what is to be observed) Interface

• registerObserver(Observer o)
• removeObserver(Observer o)
• notifyObserver(Observer o)

B. Create an Observer Interface

• receiveNotice()

C. Class to be watched implements the Subject Interface

D. Class to do watching implements Observer Interface

F. registerObserver puts Observers into a Vector (removeObserver
takes them out)

G. When code needs to notify Observers, loop through the vector
and call the Observers receiveNotice() method (passing in
whatever is needed/expected)

Figure 2.5.12-11

g. Behavioral Patterns (Template) - Use this pattern when:
• You have an algorithm that is made up of multiple steps, and
you want to customize some of those steps
• If you have steps that are shared between various implementa-
tions of the algorithm

page 20 2.5 Systems Development

2.5.12.3.8 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

Note: Defines the skeleton of an algorithm leaving some steps to subclasses;
however, if every step needs to be customized then this pattern is pointless

h. For Template Pattern - For implementation do as follows:
• Define abstract class with final method that calls all steps (functions)
• Define default behavior for steps in abstract class (public methods,
not necessarily final)
• Add conditions to steps if necessary
• Extend abstract class, override method for steps that are different

i. Creational Patterns (Builder) - Use this pattern when:
• You need to build complex sequence of steps

Note: You no longer have control over the algorithm. The steps need to be cus-
tomizable.

j. For Builder Pattern - For implementation see Figure 2.5.12-7

Builder Pattern Implementation

A. Create an interface classBuilder

B. Define empty methods that must be implemented instances

Note: Usually actions to add/remove and a get class method

C. Create classBuilder classes for whatever things needs to be built
that implements the interface

D. Individual classes need a class variable of itself that is set in the
public classBuildable call

E. Use an ArrayList or some other method to store the order of the
actions set by the client (using the add/remove methods).

Figure 2.5.12-12

k. Creational Patterns (Factory) - For implementation do as follows:
• Use this pattern when circumstances have gotten decentralized
enough that many programmers who subclass your factory class
are overriding it so much that they’re changing it substantially

Note: Best when used to separate out parts of the code that are changing fre-
quently and encapsulating it in its own object (Connection objects, etc.)

l. For Factory Pattern - For implementation do as follows:
• Build an abstract class (your base classFactory)
• Give your base “classFactory” any necessary abstract methods that
must be implemented
• Create specific extensions of the “classFactory” to meet the needs

m. Creational Patterns (Flyweight) - Use this pattern when:
• Building an abstract class (your base classFactory)
• The system has large, resource intensive objects, and you need to
make the system less resource intensive

Note: Decompose large objects into generic, smaller objects that can be configured
at runtime to appear as the large objects. This can save on system
resources.

Design Techniques and Deliverables 2.5.12 page 21

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.3.8
Any line marked with a #
is for Official Use Only

n. For Flyweight Pattern - For implementation do as follows:
• Create a class that contains only the data you might need (modeled
after the larger class)
• Ensure you have created multiple constructors for the class (to set
initial values based on the model of the data you need). Instead of setting
everything, set only what is going to be used
• Create your class as a singleton to ensure that only one instance of the
Flyweight class is in existence.

o. Creational Patterns (Singleton) - Use this pattern when:
• You need to restrict the number of objects created because you want
the share the data in those objects
• You need to restrict resource usage (instead of creating numbers of
large objects without limit)
• You need a sensitive object whose data shouldn’t be accessed by
multiple instances such as a registry

Note: To save on resources, you can select certain classes to be set up so that
only one instance of your class exists.

p. For Singleton Pattern - For implementation do as follows:
• Create your class file with a static variable of the type of the class itself
• Ensure the variable is initialized to a new instance of the class file
• Ensure you that have created a public static synchronized method
returning an instance of your class (getInstance())
• Ensure you that have created the getInstance() method return the static
variable

q. Creational Patterns (Strategy) - Use this pattern when:
• Volatile code exist that can be separated out of your application for
easy maintenance
• You need to avoid confusing how to handle a task by having to split
implementation code over several inherited classes
• You need to change the algorithm that you use for a task at runtime

Note: Separate out volatile code into algorithms that contain a complete task.

r. For Strategy Pattern - For implementation do as follows:
• Build an Interface to ensure all algorithms use the same methods
• All algorithms must implement the Interface
• The class must have a variable of the Interface; set using the specific
algorithm needed for the instance of the class

Note: Done with a “setInterface” method so that the algorithm changes at
runtime.

s. Structural Patterns (Adapter) - Use this pattern when:
• You need to fix the interfaces between two objects without having to
change the objects directly (common in store-bought stuff)
• If what the object exposes isn’t what you need, add an adapter to build
what you need
• When you have legacy code that can’t be changed

Note: When you need to make incompatible objects talk to another, you use the
exposed methods of one class to feed a secondary class, which then feeds
the data into the second object’s exposed methods.

t. For Adapter Pattern - For implementation do as follows:
• Define an Interface to the second class
• Define a classAdapter class using the interface

page 22 2.5 Systems Development

2.5.12.3.8 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

• This class needs to store the first class as a variable
• Build code that gets the first class values and adapts them to the
second class values

u. Structural Patterns (Composites) - Use this pattern when:
• You want to create a tree-like structure and access the leaves in the
same way as the branches e.g., organization chart
• You are working with a collection of objects in a tree-like structure
• You are working with XML

v. For Composites Pattern - For implementation see

Composites Pattern

A Create an abstract class that has an add method to add(abstract
class) and a getIterator method (to return an iterator in branch/
leaf implementations), but return nothing here.

B Include any other methods that need to exist in the concrete
classes

C Create any leafs for the tree that extends the abstract class

D Build an Iterator class for the leaf to return on the getIterator
method

E Create any branches that extends the abstract class

F Build an Iterator class for the branches

• As branches and leaves are both children of the abstract
class, you can create a collection to hold them (and the
branch can hold the leaf)

• When you call the other methods you defined, it will call
them for everything in the tree (assuming your method (like
print()) uses an iterator to go through everything)

Figure 2.5.12-13

w. Structural Patterns (Decorator) - Use this pattern when:
• You want to “decorate” the results of something in a class with
something additional without having to modify the base class for all
instances

Note: Use wrapper code to extend core code (wrap your class in another class to
give it new/extended functionality).

x. For Decorator Pattern - For implementation do as follows:
• Build an abstract class that extends your original class (classDecorator)
that defines method(s) that must exist in all derived classes
• Derived class (extends classDecorator) must have local variable to hold
base class (set with constructor)
• Decorator class calls method from base class, and extends it in some
fashion (class.description() + decorator.description())

y. Structural Patterns (Facade) - Use this pattern when:
• A class interface is too hard to manipulate
• The code is poorly encapsulated
• You need the code to do “x, y, z” without a lot of intermediate steps
• You can’t rewrite the code to make it easier

Note: Provides a wrapper to make original code more workable.

Design Techniques and Deliverables 2.5.12 page 23

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.3.8
Any line marked with a #
is for Official Use Only

z. For Facade Pattern - For implementation do as follows:
• Façade class wraps the difficult class (like a Decorator)
• Make a simple method to do what is needed with the difficult class
• Provide methods to access the difficult classes simple methods

2.5.12.3.9
(12-16-2021)
Object-Oriented Analysis
and Design Process

(1) Object-Oriented Analysis (OOA), Object-Oriented Design (OOD), and Object-
Oriented Programming (OOP) are related, but different. (OOA) pertains to
developing an object model of the application domain. OOA is a method of
analysis that examines requirements from the perspective of the classes and
objects found in the vocabulary of the problem domain. The primary difference
between an object-oriented analysis and other forms of analysis with the
object-oriented approach, requirements are focused on objects which integrate
both data and functions.

(2) OOD involves implementation of the conceptual model produced during object-
oriented analysis which are technology-independent. The conceptual model is
also mapped while implementing classes, constraints are identified and inter-
faces are designed, resulting in a detailed description of how the system is to
be built on technologies.

Figure 2.5.12-14

(3) The primary differences between OOA and OOP are the following:

Object-Oriented Analysis and Object-Oriented
Design Requirements

Object-Oriented Analysis (OOA) Object-Oriented Design (OOD)

OOA allows you to take a
problem model and re-cast it in
terms of objects and classes.

OOD allows you to take your
analyzed requirements and make
a connection between the objects
you’ve proposed, and determine
the details for object attributes
and methods.

Identify objects Restructuring of class data if
needed

page 24 2.5 Systems Development

2.5.12.3.9 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415031 Any line marked with a #

is for Official Use Only

Object-Oriented Analysis (OOA) Object-Oriented Design (OOD)

Organize objects by creating
object model diagram

Implementation of methods e.g.,
internal data structures and algo-
rithms

Define the internals of the
objects, or object attributes

Implementation of control

Define the behavior of the objects
i.e., object actions

Implementation of associations

Describe how the objects interact Write or receive the problem
statement. Use to generate an
initial set of program features.

Model data by creating Entity-
Relationship diagrams

Create a list of program features
derived from the problem
statement. This feature list may
also be user stories.

Define behaviors by creating flow
charts or structure charts

Write up use cases: This will
capture the goal of an action, the
trigger event that starts a
process, and describe each
process step.

Create prototypes or user-
interface mock-ups

Use the objects generated from
your OOA and determine whether
to use: inheritance, aggregation,
composition, abstract classes, or
interfaces in order to create an
efficient model.

Figure 2.5.12-15

Design Techniques and Deliverables 2.5.12 page 25

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.3.9
35415030Any line marked with a #

is for Official Use Only

2.5.12.3.9.1
(12-16-2021)
Use Case Diagrams

(1) A use case is a Unified Modeling Language (UML) behavioral diagram used as
a graphic overview of the actors involved in a system, different functions
needed by those actors, and how the different function interact. Use cases can
be employed during several stages of software development, such as: planning
system requirements, validating design, testing software, and creating an
outline for user manuals. A use case diagram contains four components:

a. System Boundary: Defines the system of interest in relationship to the
project.

b. Actors: These are the individuals involved with the project’s system, and
are defined according to their roles.

c. Use Cases: A use case (or set of use cases) has the following character-
istics:
• Organizes all functional requirements.
• Models the goals of system/actor (user) interactions.
• Records paths (called scenarios) from trigger events to goals.
• Describes one main flow of events (also called a Course of Action
(COA)).
• Is multi-level, so that one use case can use the functionality of another
one.

d. Relationship: This is the connection between the actors and the use
cases.

2.5.12.4
(12-16-2021)
User Interface (UI)
Design Principles

(1) The user interface is the front-end application view to which the user interacts
in order to use the software product. The UI design must be:

a. Attractive: Be purposeful with the page layout by considering the space
between items on the web page, and structure the page based on impor-
tance.

b. Easy to use and understand.
c. Strategic when using color and texture: Use color, light, and contrast

base on guidance from IRM 1.17.1 Organization, Finance, and Manage-
ment, Publishing, Use of the Official IRS Seal, IRS Logo

d. The design must be consistent on all interface screens.

2.5.12.4.1
(12-16-2021)
User Interface Design
Process

(1) User interface design is the process of making interfaces in software or com-
puterized devices with the goal of making the user’s interface as simple and
efficient as possible. The analysis and design process of a user interface is
iterative, and can be represented by a spiral model. This UI consists of four
framework activities:

a. User, Task Environmental Analysis, and Modeling:
• Gather information of how the users will interact with system.
• Determine the user’s needs, challenges, and problems.
• Determine user’s experience, level of knowledge, and skills.

b. Interface Design:
• Define the set of interface objects and actions i.e., control mechanisms
that enable the user to perform their desired tasks.
• Design your interface in a way that allows the user to focus on what is
most important. A good way to start your design is with simple wire-
frames, mock-ups, and prototypes.

page 26 2.5 Systems Development

#
#
#

2.5.12.3.9.1 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

• Design ways for the users to undo actions i.e., a user inputting wrong
information will be allowed to select an “Undo” button, and enter the
correct information.
• Provide Feedback to Users: Your interface must display visual cues
or simple messaging that show users whether their actions are valid, and
have led to the expected results.

c. Interface Validation:
• The interface must implement every user task correctly, and accommo-
date all tasks variations based on project requirements.
• Verify user acceptance and validation of the interface’s design and
usability for their work environment.

2.5.12.4.2
(12-16-2021)
Design Wireframes and
Mock-ups

(1) Wireframes: A wireframe is a skeletal framework of a product or solution.
Wireframes are low-fidelity visualizations that can be created using non-
technical mediums i.e., whiteboarding or using design or prototyping software.

a. Wireframes are created before design work begins, and serve as a
blueprint that defines each web page’s structure, content and functionality
so the focus is on layout without the distraction of color and visual
elements. The following must be considered when creating wireframes:
• Gathering Requirements: Add all requirements that answer concerns by
the customer and project team.
• Include Important Elements: Wireframes must include all the important
elements of a web page or user interface e.g., navigation, company logo,
search function, user input, and user log-in areas.
• Must be practical and usable, but also organize your ideas in an
orderly manner.

(2) IRS Approved Software: One approved tool for creating your wireframe
diagrams is Microsoft Visio, but when a license is not available PowerPoint is
an alternative.

(4) Mock-up: A mock-up is a realistic visual detail of the products appearance,
and must display the basics of its functionality.

(5) For more IRS guidance on design wireframes and mock-ups, see Business
Planning and Risk Management (BPRM), Requirement Engineering Program
Office (REPO) guidance link http://it.web.irs.gov/brrm/assets/REPO_Viz_
Consumption_Guidance_v1.0_20171019.pdf#search=wireframe.

2.5.12.4.2.1
(12-16-2021)
Prototype Design Best
Practices

(1) A prototype is a representation of a finished product, and is initiated at the start
of any project to gather requirements. Prototypes are a way for designers and
developers to test the flow, interaction, content, feasibility, and usability before
building and designing a fully-functioning product. Prototypes are not meant to
be the final product; some features won’t work, it will not be pixel-perfect, and
the design and copy won’t be finalized. The prototyping model has the
following Software Development Life Cycle (SDLC) phases:

Design Techniques and Deliverables 2.5.12 page 27

#
#
#

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.4.2.1
Any line marked with a #
is for Official Use Only

http://it.web.irs.gov/brrm/assets/REPO_Viz_Consumption_Guidance_v1.0_20171019.pdf#search=wireframe
http://it.web.irs.gov/brrm/assets/REPO_Viz_Consumption_Guidance_v1.0_20171019.pdf#search=wireframe

Prototyping Model Software Development Life Cycle (SDLC) Phases

Prototyping Model SDLC Phases

Step 1.
Requirements gathering and

analysis
a. During this process, the users of the system are

interviewed to determine what is their expectations.

Step 2. Quick design

a. A simple design of the system is created that
provides a brief idea of what can be implemented to
the user. This preliminary design helps in develop-
ing the prototype.

Step 3. Build a Prototype
a. An actual prototype is designed based on the infor-

mation obtained from the quick design. This is a
small working model of the required system.

Step 4. Initial user evaluation

a. Present the proposed system to the customer for an
initial evaluation. This will help determine the
strength and weakness of the working model.

b. All comments/suggestions are collected from the
customer, and provided to the developer.

Step 5. Refine the prototype

a. If the customer is not satisfied with the current
prototype, you need to refine the prototype
according to their feedback and suggestions. This
phase will not be over until all requirements identi-
fied by the user and/or customer are met.

b. After the user/customer is satisfied with the
developed prototype, a final system is developed
based on the approved final prototype.

Note: Collaboration with Enterprise Operations (EOps) is
also necessary.

Step 6. Implement Product and Maintain

a. Complete all Enterprise Life Cycle documentation in
according with ELC Guidance IRM 2.16.1.

b. After the final system is developed based on the
final prototype, you must collaborate with users to
thoroughly test and deploy to production.

Note: Collaboration with Enterprise Operations (EOps) is
also necessary.

(2) The following are the best practices for the prototyping process:

a. Use prototyping when the requirements are unclear.
b. Perform scheduled and controlled prototyping.
c. Schedule regular meetings to keep the project on time and avoid costly

delays.
d. Inform users, customers, and the designers promptly of any prototyping

problems or concerns.
e. Implement all important features early so that if you run out of time, you

still have a worthwhile system.
f. Do not allow your team to move to the next step until the initial prototype

is approved during project initiation stage.
g. Select the appropriate step size for each version.

page 28 2.5 Systems Development

2.5.12.4.2.1 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

2.5.12.4.2.2
(12-16-2021)
Prototyping Benefits
Throughout the
Enterprise Life Cycle
(ELC)

(1) The use of prototypes can be used during any of the ELC milestones, see
table IRM 2.5.12.4.2.2:

ELC Milestones and Prototyping Benefits

ELC Milestones ELC Prototyping Benefits

1.
MS 0 - Vision &
Strategy

• Provides an increased understand-
ing for portfolio prioritization and
decision making

2.
MS 1 - Project Initia-
tion

• Known to accelerate project
start-up and enforcement of
standards through the use of
common reusable libraries

3.

MS 2 - Domain Archi-
tecture

MS 3 - Preliminary
Design

MS 4a - Detailed
Design

• Provides a better understanding of
scope, system boundaries, and
requirements among all stakehold-
ers

• Enhances the ability to review,
iterate, and validate requirements
through visual models rather than
traditional statements

• Accelerates knowledge transfer to
dependent teams

• Enhances test case creation

4.
MS 4b - System De-
velopment

• Improves clarity for requirements
resulting in less rework during de-
velopment

• Accelerates training and use case
development because of visualiza-
tion

• Mitigates risks through early user
engagement and user-centric
design

2.5.12.5
(12-16-2021)
Structure Chart
Overview

(1) A structure chart is a top-down modular design tool that represents two main
graphical elements: modules shaped as rectangles, and the arrows that denote
relationships between modules and data movement. The structure diagram is a
method of designing a solution to solve a software problem.

(2) Common Types:

a. Work Breakdown - This structure chart is used during project manage-
ment for displaying milestones.

b. Organizational - A diagram that displays the structure of an organization’s
reporting hierarchy within a business, government, or organization. The
types of structure are: Hierarchical (most popular), Matrix, and Horizontal/
Flat.

(3) The following figure depicts a hierarchical structure chart.

Design Techniques and Deliverables 2.5.12 page 29

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.5
Any line marked with a #
is for Official Use Only

Figure 2.5.12-16

(4) Each structure chart forms a graphic model of the program’s design shown
through a hierarchy of modules. Use the structured design technique after
structured analysis. One aspect of structured analysis is “packaging”, or subdi-
viding of the data flow diagrams into subsystems consisting of related groups
of processes. In structure design, a separate structure chart will then model
each run/process. Although structured analysis provides a bridge to structured
design, it is not a prerequisite to the design. Regardless of the analysis
technique used, a system still must be subdivided into a group of runs or
processes, at which point structured design shall begin.

(5) In a project where structured analysis was not required or employed, the prin-
ciples applied in partitioning the data flow diagrams must still be applied to
arrive at a high-level system schematic that then can be used for a design
implementation.

2.5.12.5.1
(12-16-2021)
Structure Chart Best
Practices

(1) Each structure chart must depict the following:

• Modules must be graphically represented by boxes, joined together in a
tree-like structure by module connectors, graphically represented by
lines to show superior and subordinate modules.

• Interface parameters or couples must be graphically represented by
short arrows with a circular tail, used to show movement of data items
from one module to another.

(2) The figure below illustrates the basic format of a structure chart. Module
names and numbers, and interface parameter names have been omitted for
the sake of simplicity, although they normally a part of any structure chart.

page 30 2.5 Systems Development

2.5.12.5.1 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415028 Any line marked with a #

is for Official Use Only

Figure 2.5.12-17 Basic Format of a Structure Chart

(3) Examine the partitioned data flow diagrams and apply transform and/or trans-
action analysis to accomplish the initial development of a structure chart. Use
these strategies to examine and analyze the data flow as graphically presented
in data flow diagrams; these strategies require judgment. Apply the basic
concepts of transform and/or transaction analysis to any design regardless of
whether structured analysis preceded structured design.

(4) Other criteria exist to evaluate and improve the quality of a design. Properly
apply the concepts of cohesion, coupling, decision splitting and other heuristics
to produce a well-partitioned and easily maintained system.

2.5.12.5.2
(12-16-2021)
Transform
Analysis/Transaction
Analysis Overview

(1) Transform analysis is the process of taking a Data Flow Diagram (DFD), and
converting it to a structure chart. The idea behind transform analysis is trans-
forming an input data flow into an output data flow, and the central transform is
the central process that transforms the data.

(2) Transaction analysis is the process of identifying a set of transactions (usually
via DFD fragments), and developing a structure chart with a calling structure to
call a module for each transaction.

2.5.12.5.2.1
(12-16-2021)
Transform Analysis Best
Practices

(1) Use Transform Analysis to analyze the data flow diagram, identify the primary
processing functions, high-level inputs, and high-level outputs, and provide a
“first draft” of a structure chart, resulting in a design that bears a simple
straightforward relationship to the data flow. The final design will be a refine-
ment of this initial structure, which will reflect alterations based on the concepts
of cohesion and coupling.

(2) Apply the following steps to develop structures which are fully, or almost fully
factored:

a. Identify highest-level data and the transform center;
b. Apply first-level factoring; and
c. Apply full-system factoring.

Design Techniques and Deliverables 2.5.12 page 31

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.5.2.1
35415001Any line marked with a #

is for Official Use Only

(3) To identify the highest-level data and the transform center, study each partition
of the data flow diagram to determine what point the input data no longer rep-
resents input to the system and at what point data can be perceived as
becoming output. Consider the following:

• Afferent data is physical input data transformed to logical input as it
passes through the data flow diagram. As this incoming data moves
through the data flow diagram, it becomes more abstract and highly
processed until it reaches a point at which it can no longer be consid-
ered input. This is the point of highest-level afferent data.

• Efferent data is logical output transformed to physical output as it
passes through the data flow diagram. If this data is traced back
through the data flow diagram, a point is reached at which the output
data stream can no longer be recognized as output. This is the point of
highest-level efferent data, the point at which the data elements have
had the least amount of processing to convert them to output data.

• The data transformation(s) between the afferent and efferent data
elements represents the transform center, where data not recognizable
as either input or output is processed.

• A data flow diagram may contain multiple afferent and efferent streams
and/or transform centers.

(4) Figure 2.5.12-2 illustrates a simplified example of a run/process to which
transform analysis has been applied.

Figure 2.5.12-18 Data Flow Diagram that resulted from Transform Analysis

(5) To apply first-level factoring, identify subfunctions subordinate to a module. At
the first-level, this results in modules that represent afferent and efferent data
streams and the central data transformation point. The following figure illus-
trates first-level factoring.

page 32 2.5 Systems Development

2.5.12.5.2.1 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415002 Any line marked with a #

is for Official Use Only

Figure 2.5.12-19

(6) To apply full-system factoring, break down each branch of the system into sub-
functions to the lowest process level and physical input/output module to
accomplish full-system factoring. The following figure depicts a structure chart
that models an example of a transform-centered system.

Design Techniques and Deliverables 2.5.12 page 33

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.5.2.1
35415003Any line marked with a #

is for Official Use Only

Figure 2.5.12-20 Full System Factoring

2.5.12.5.2.2
(12-16-2021)
Transaction Analysis
Best Practices

(1) Use transaction analysis to analyze the data flow diagrams and develop a
module structure that is based on the processing of transactions. A transaction
is any element of data, control, signal, event, or change of state, which causes
an action.

(2) To apply transaction analysis, perform the following steps:

1. Identify the sources of transaction.
2. Identify transactions and the processing that takes place for each trans-

action.
3. Specify a module to process each transaction.
4. Factor each transaction module by developing subordinate action

modules.
5. Factor each action module by developing subordinate detail modules.

(3) The following figure shows a data flow diagram for a transaction-centered
system.

page 34 2.5 Systems Development

2.5.12.5.2.2 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415004 Any line marked with a #

is for Official Use Only

Figure 2.5.12-21 Data Flow Diagram for a Transaction-Oriented System

(4) Develop the structure chart below for a transaction-centered run/process. See
Figure 2.5.12-15. Module 1 is the “Transaction Processor”. Modules 1.2, 1.3,
and 1.4 are the “Action Modules”. Module 1.2.1, 1.2.2, and 1.3.2 are the
“Detail Modules”.

Design Techniques and Deliverables 2.5.12 page 35

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.5.2.2
35415005Any line marked with a #

is for Official Use Only

Figure 2.5.12-22 Structure Chart

2.5.12.5.2.3
(12-16-2021)
Information
Specification

(1) Throughout the development of the structure chart, determine what information
a module needs in order to function. Once a preliminary design is developed,
specify the information that is external to that module on the structure chart, in
the form of parameters.

(2) Use parameters to pass information from one module to another. Parameters
can be data or process control information. Parameter passing allows modules
to be independent of each other.

(3) Although information can also be accessed from a common environment, this
increases the complexity of the design and binds modules together (increases
coupling). Limit your use of this approach. Ensure that the design only reflects
the data, which each module needs in order to do its job (e.g., if the program
under design evolves into a single unit that can be compiled, do not treat the
entire data storage area as common).

page 36 2.5 Systems Development

2.5.12.5.2.3 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415006 Any line marked with a #

is for Official Use Only

2.5.12.5.2.4
(12-16-2021)
Structure Chart
Refinement

(1) Once a structure chart is developed using transform and/or transaction
analysis, evaluate it and identify those areas that can be refined. By using the
concepts of coupling and cohesion, and applying the rules of thumb described
below, the designer can identify and improve the structure of the system.

(2) The revised structure chart must result in an improved design that does not
deviate drastically from the original design.

(3) Use the following three methods to identify the strengths and weaknesses of a
design:

• Cohesion
• Coupling
• Heuristics

2.5.12.5.2.4.1
(12-16-2021)
Cohesion

(1) Cohesion measures the strength of associations between the processing
elements within a module. A processing element can be a statement, segment,
or subfunction.

(2) Maximize the relationships among the elements to obtain an optimal modular
design that will increase the reliability, extensibility, and maintainability of the
program. Strong and independent modules can often be used in other
programs.

(3) A highly cohesive module is a collection of statements and data items that
must be treated as a whole because they are functionally related, that is, the
module performs a single function.

(4) Acceptable but weaker cohesion exists in a module when several related tasks
are grouped together because they are strongly bound by use of the same or
closely related data items.

(5) Unacceptable cohesion exists in a module when it performs unrelated tasks,
bound together by weak relationships.

(6) Name the module or describe its function in a single sentence to test for strong
cohesion. If this can accurately be done using only one transitive verb and a
specific non-plural object, then the module is of acceptable cohesion.

(7) Apply cohesion to individual modules as well as the whole design structure.
When applying this name test, ensure that the upper level module’s name
reflects the function of the modules subordinate to it.

2.5.12.5.2.4.2
(12-01-2002)
Coupling

(1) Coupling measures the interdependency between modules. A design that has
minimal coupling between its modules is easy to maintain. The higher the
degree of coupling, the more a programmer will need to consider other
modules when coding, debugging, or modifying one module, and the more
likely it will be that a change to the inside of one module will affect the proper
functioning of another module. Low coupling between modules signifies a well-
partitioned system.

(2) There are three major factors that can increase or decrease coupling. These
factors are:

• Type of connection between modules
• Complexity of interface
• Type of information transmitted between modules

Design Techniques and Deliverables 2.5.12 page 37

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.5.2.4.2
Any line marked with a #
is for Official Use Only

(3) The type of connection between modules involves:

• A minimally connected system includes modules with single interfaces
supported by parameter passing (one entry/one exit, with return always
to the calling module at the next executable instruction). Minimal con-
nectivity is the acceptable standard.

• A system that contains modules with multiple entry points, alternate
returns, unconditional transfer of control to a normal entry point, or any
combination of the three is undesirable and unacceptable.

• A system that includes unconditional transfers of control to labels within
other modules or explicit references to data elements in other modules
introduces invisible coupling. This type of coupling is also unacceptable.

(4) The number of different items/connections passed between modules deter-
mines the complexity of an interface. Simple interfaces, which involve the
passing of minimal information that is directly accessed, are best.

(5) The types of information transmitted between modules involves:

• Data are information, which is operated upon, manipulated or changed
by a module, and is essential to the functioning of a module.

• Control information is any flag, switch or variable that regulates the flow
of processing. Control information causes modules to be interdependent
and its use must be minimized.

2.5.12.6
(12-16-2021)
Structure Chart
Conventions and
Standards

(1) Make the module name a 2 to 3 word description of the function performed by
a module. It must specifically describe what the module accomplishes in
respect to its super ordinate. The following figure illustrates this convention:

Figure 2.5.12-23 Module Naming Conventions

(2) Organize structure charts in run number sequence.

(3) In leveling modules, limit the module levels to five for each page of a structure
chart.

page 38 2.5 Systems Development

2.5.12.6 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415007 Any line marked with a #

is for Official Use Only

2.5.12.6.1
(12-16-2021)
Module Numbering

(1) Ensure that the number of a module indicates the level of the module in the
hierarchy and its related super ordinate module. In the following example,
preceding 0’s and decimal points have been omitted (i.e., Modules 0.1, 0.2,
and 0.3 are numbered 1, 2, and 3 respectively).

Figure 2.5.12-24 Module Numbering

2.5.12.6.1.1
(12-16-2021)
Multiple Page Structure
Charts

(1) Multi-page charts will be necessary for most runs or subsystems. When a run/
process is too large to be shown on a single page without crowding, portray
the lower-level components of each major processing leg on separate pages.
The full set of charts will model the same complete run or subsystem as a
single huge chart, but this set will be much easier to update and maintain.

(2) The first page must show at least the main coordinating modules and the high
level modules; existence of subordinate modules must be indicated by use of
broken lines and page number references. The page number must be shown
in the upper right-hand corner of each chart. The following figure provides an
example:

Design Techniques and Deliverables 2.5.12 page 39

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.6.1.1
35415008Any line marked with a #

is for Official Use Only

Figure 2.5.12-25 Multi-Page Structure Charts

(3) Designate a subsequent page for each major processing leg and must be
numbered and the continuation annotated as shown in the following examples
of pages 2 and 3.

page 40 2.5 Systems Development

2.5.12.6.1.1 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415009 Any line marked with a #

is for Official Use Only

Figure 2.5.12-26 Multi-Page Structure Chart 1

Design Techniques and Deliverables 2.5.12 page 41

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.6.1.1
35415010Any line marked with a #

is for Official Use Only

Figure 2.5.12-27 Multi-Page Structure Chart 2

2.5.12.6.1.2
(12-16-2021)
Pre-existing (Common)
Modules

(1) Number the modules that are reusable throughout a run/process or between
subsystems (i.e., library modules). When a run/process is large and complex,
all subsequent occurrences of a reusable module must also refer back to the
first occurrence of the module. Show both numbers on the structure chart, to
make it easier to locate the module specifications and the coded module since
they are numerically arranged. If connectors are not drawn from the super-
ordinate modules to the common modules, then the first occurrence module
number is shown in parentheses. The following figure illustrates these
practices.

Figure 2.5.12-28 Module Numbering

page 42 2.5 Systems Development

2.5.12.6.1.2 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415011, 35415012 Any line marked with a #

is for Official Use Only

2.5.12.6.2
(12-01-2002)
Module Notations

(1) Use the following notations to develop a structure chart:

• Special module notation
• Pre-existing module notation
• Lexical inclusion notation
• File notation

2.5.12.6.2.1
(12-01-2002)
Special Module Call
Notation

(1) Special module call notations shall only be used in situations that warrant
exception documentation, that is, only when it is necessary to include
important procedural information in the design of the system. Since these
symbols tend to clutter a structure chart, cause maintenance problems, and
are subject to varying interpretations, limit usage to exceptional cases.

2.5.12.6.2.1.1
(12-16-2021)
Decision

(1) Module 1 calls Module 1.1 conditionally, based on the result of a major
decision in the following figure.

Figure 2.5.12-29 Modules

2.5.12.6.2.1.2
(12-16-2021)
Iteration

(1) Module 1 loops through calls to 1.1 and 1.2 in the example below:

Figure 2.5.12-30 Module (Iteration)

Design Techniques and Deliverables 2.5.12 page 43

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.6.2.1.2
35415013, 35415014Any line marked with a #

is for Official Use Only

2.5.12.6.2.2
(12-16-2021)
Lexical Inclusion

(1) This notation indicates the statements that constitute a module are written con-
tiguously, that is, coded in-line, within the boundaries of another module.
Module 1.1 in the example below is actually in-line code to Module 1; it is
lexically included in Module 1.

Figure 2.5.12-31 Lexical

2.5.12.6.2.3
(12-16-2021)
Pre-Existing Module
Notation

(1) Pre-existing Module Notation indicates a module developed or used before
(i.e., noted elsewhere in the structure chart). In the example below, Module 1.1
is used elsewhere in the system and striping the module representation shows
that fact.

Figure 2.5.12-32 Pre-Existing Module Notation

2.5.12.6.2.4
(12-16-2021)
File Notation

(1) File notation indicates a data file. It can be used when representing an internal
sort file; however, its use is generally discouraged.

page 44 2.5 Systems Development

2.5.12.6.2.2 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415015, 35415016 Any line marked with a #

is for Official Use Only

Figure 2.5.12-33 Symbol used to depict a File

2.5.12.6.3
(12-16-2021)
Structure Chart
Common Environment

(1) This information is noted at the bottom of the structure chart. Modules actually
using the data are to be identified in parentheses. In the example below
RANGE-TABLE is common to modules 1 and 3:

Figure 2.5.12-34 Common Environment

2.5.12.6.4
(12-16-2021)
Structure Chart Interface
Parameters (Couples)

(1) Information flow between modules must consist only of the passing of param-
eters. A line connecting two modules on a structure chart defines the interface
between those modules; the parameters flow along this interface.

2.5.12.6.4.1
(12-16-2021)
Interface Parameter
Names

(1) The names of data parameters (couples) must match those names used in the
FSP whenever possible. The data flow diagram names in the FSP often show
modifiers (i.e., NAME-CONTROL-(VALID), NAME-CONTROL-(INVALID)) to
represent the logical flow of data. As the structure charts depict the physical
flow of data, only the pure data name may be shown, without illustrating any
modifiers.

(2) Make the control couples descriptive.

2.5.12.6.4.2
(12-16-2021)
Identifying Data and
Control Parameters

(1) Identify the parameters (couples) by using either the structure chart or a
parameter list.

Design Techniques and Deliverables 2.5.12 page 45

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.6.4.2
35415017, 35415018Any line marked with a #

is for Official Use Only

(2) To use the structure chart to identify parameters, use a short arrow with a clear
or a solid circular tail indicates each parameter. The arrow indicates the
direction of flow along the interface. The following figure illustrates these con-
ventions.

Figure 2.5.12-35 Parameters

(3) The name or identification of the parameter appears beside the arrow. The
following figure depicts a structure chart with labeled parameters.

Figure 2.5.12-36 Structure Chart Parameter list

(4) To use a parameter list:

1. Number each module connector and create a table listing the module
connector numbers and the related input and output parameters. Identify
a control parameter by underlining its name in the parameter table.

2. Sparingly use the parameter list, a labeled parameter arrow along the
interface line can be comprehended more quickly than a numerical
reference to an entry in a table. To avoid flipping back and forth among
the pages of the documentation, the parameter list must appear on the
same page as the related portion of the structure chart.

(5) If the number of parameters or the length of the parameter names clutters the
structure chart, then a parameter list may be particularly useful. Exhibit 2.5.12-
2 provides an example of page 1 of a structure chart using a parameter list.

2.5.12.6.5
(12-16-2021)
Sorts

(1) A stand-alone system sort or a straightforward internal sort that is shown as a
separate run/process on a technical diagram must not be displayed on a
structure chart unless it is an integral part of the overall program design.

page 46 2.5 Systems Development

2.5.12.6.5 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415019, 35415020 Any line marked with a #

is for Official Use Only

(2) Show the stand-alone system sort or a straightforward internal sort on the
structure chart in order to present a coherent representation of the process.
Show Sort input or output files on a structure chart for clarity.

(3) A stand-alone system sort or a straightforward internal sort must be docu-
mented in the run description.

2.5.12.6.6
(12-16-2021)
Analysis/Design
Cross-Reference List

(1) In large and complex projects, there may be a need for an audit trail between
the modules of a structure chart and the process specifications of a functional
specification package. In this case, attach a list cross-referencing each indi-
vidual module on a structure chart to the corresponding process specifications
in the functional specification package that describe the transformation of data
parameters entering and exiting that module. See Exhibit 2.5.12- 3.

(2) Include a cross-reference list when:

• A project manager determines that it is necessary for project control
purposes or that it would significantly enhance the usability of project
documentation.

• The cross-reference is requested by quality review (i.e., Internal Audit,
Quality Assurance, testing personnel).

2.5.12.7
(12-16-2021)
Structure Chart Module
Specification

(1) Module specifications provide the link between structure charts and the coding
of structured programs. In effect, the structure chart shows the architecture of
a system, not the sequence of procedures, which transform system input to
system output. However, in order to proceed with programming, we must know
the transform from input to output affected by each module of a structure chart.
When a module is invoked, a module specification defines what happens.

(2) There are two types of modules that comprise a structure chart: data transfor-
mation modules and control modules. Although specification of the internal
logic of a module is generally considered a programming task, there is consid-
erable overlap between the design and programming activities at this stage,
just as there was between analysis and design when packaging the data flow
diagrams. It is therefore necessary to specify procedural detail for both data
transformation and control modules.

2.5.12.7.1
(12-16-2021)
Pseudocode

(1) Pseudocode pertains to creating a non-programming language outline of your
code’s intent, and is similar to structured English. It is a type of module specifi-
cation that describes in code like terms how to do the transform effected by a
module. As pseudocode is much closer to actual code than structured English,
it allows less margin for misinterpretation and must be written using only the
three basic constructs of programming: sequence, selection, and iteration. The
specified logic for each module must not be oriented to any specific program-
ming language.

(2) Pseudocode ensures that the logic of every module is structured. Pseudocode
can be shown graphically to help display the control structure while depicting
program logic. Graphic pseudocode is easily maintained, more meaningful, but
does not display “statements” The main goal of pseudo code is to explain what
specifically each line of a program must perform; therefore, the code construc-
tion phase becomes easier for the programmer/developer. Pseudocode is
useful for the following:

Design Techniques and Deliverables 2.5.12 page 47

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.7.1
Any line marked with a #
is for Official Use Only

a. To describe how an algorithm must work.
b. To explain the coding process to less-technical users.
c. To design code as a team for solving complex problems.

2.5.12.7.1.1
(12-16-2021)
Pseudocode Best
Practices

(1) The following is the recommended strategy when using pseudocode:

a. Implement pseudocode before the actual coding process.
b. Write using simple terminology.
c. Do not write source code, but write your thoughts of what the program

must perform.
d. Limit pseudocode statements to one for each line.
e. Use capitalization for all keywords on each line.
f. List your pseudocode in the proper order that must be executed for your

coding project.
g. Make sure the pseudocode can easily be translated into a programing

language.
h. Ensure the pseudocode describes all processes related to the program.
i. Implement peer-reviews for rechecking your pseudocode for readability

and clarity.

2.5.12.7.2
(12-01-2002)
Module Specification
Development/Standards

(1) For control and data transformation modules, pseudocode will be developed
for each module on the structure chart. Either a Structured English, Warnier-
Orr, or Nassi-Shneiderman format may be used for the pseudocode. This task
begins in the design stage and, by the programming stage, must be
completed.

(2) Do not write program source code for a module until pseudocode for that
module has been completed.

(3) Begin the development of pseudocode (especially for high level modules)
during the design stage.

(4) Once the pseudocode for a given module is complete, source coding may
begin for that module, (i.e., higher level modules may be source coded before
the pseudocode for the lower levels has been developed).

(5) Develop pseudocode for any remaining modules during the programming
stage.

(6) Use the same form of pseudocode for all modules in any given system.

2.5.12.7.3
(12-16-2021)
Pseudocode-
Conventions/Standards

(1) The following header information must be present on all pseudocode:

• Programmer/Designer - Person responsible for the logic of the module.
• Date - The date of origination or revision.
• Program - Name of the program that contains this module.
• Module Number - The number assigned to the module on the structure

chart.
• Module Name - Name of the module on the structure chart.
• Input Parameters - The parameters passed to this module from its

invoking module.
• Output Parameters - The parameters passed by this module to its

invoking module.
• Local Variables - Variables, flags, switches, work areas used only by

this module.

page 48 2.5 Systems Development

2.5.12.7.1.1 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

• Function - Brief statement describing the function of the module. This
must not be a detailed description of the module logic or its internal pro-
cessing.

2.5.12.7.3.1
(12-01-2002)
Reusable (Common)
Modules

(1) Only develop pseudocode for reusable (common) modules to be developed for
the first occurrence of the module on the structure chart. The pseudocode
must contain cross-references to all other occurrences of the module within the
process/run.

(2) For modules that are reused by numerous processes/runs, the pseudocode
must also provide a cross-reference to the organization responsible for main-
taining it.

2.5.12.7.3.2
(12-16-2021)
Organization and
Maintenance

(1) Organize the pseudocode in run-module sequence number and maintain it in
the project library.

(2) Package the pseudocode developed for common modules with other pseudo-
code for the system, or it may be packaged as a separate document. If
maintained as a separate document, it must by easily accessible and readily
available to all members of a project team.

(3) Retain the most current pseudocode as part of the project documentation in
the project library. Before coding changes are made to an existing module,
update or redo the pseudocode to reflect any logic changes that will occur in
the module.

2.5.12.8
(12-16-2021)
Structure Charts
Packaging and
Preprogramming
Considerations

(1) At the end of analysis, partition a single set of data flow diagrams into related
groups of processes; manual and automated boundaries are established i.e.,
(data flow diagrams are packaged). This gives the designer a starting point for
the development of the structure charts.

(2) Once the structure charts are completed, they must be reevaluated to see if
further decomposing and/or packaging is necessary to meet the criteria of the
specific hardware/operating system. Estimate the size of each module. Based
on memory requirements of a particular structure, as well as other characteris-
tics such as logical execution patterns and overall system efficiency, it may be
desirable or necessary to partition a structure chart into smaller units (for com-
pilation and/or execution purposes). Determine if further packaging is
necessary. Use the criteria for packaging to determine which modules must be
grouped together and which must be isolated. In general, the following guide-
lines must apply:

• Include groups of modules that are frequently invoked or executed,
close to one another in the same program.

• Define groups of modules so that splitting of preferred groupings by
program boundaries is minimized without bringing the size of the
program above the allowable maximum for the specific hardware
system. This grouping will result in the most efficient packaging for the
given structure within given memory constraints.

(3) Figure 2.5.12- 21 specifies grouping criteria for packaging.

Design Techniques and Deliverables 2.5.12 page 49

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.8
Any line marked with a #
is for Official Use Only

Grouping Criteria for Packaging

Grouping Criteria Priority Rules

Volume (if known). Include in the
same program modules with high
volume of access on connecting
references (many activities or
many items passed).

High volume takes precedence
over low volume.

Iterations. Include in the same
program modules connected by
iterated references (loops).

Inner loops take precedence over
outer loops; loops nested within a
module take precedence over
nesting by subordination. If
volume criteria is known, then this
criteria takes precedence over
iteration.

Frequency. Include in the same
program modules with high
frequency of access on connect-
ing references (frequent transfers
of control or data.

High frequency takes precedence
over lower frequency. If known,
volume and/or iteration are pref-
erable.

Interval. Include in the same
program, as either the super
ordinate or subordinate, any
module with short interval of time
between activation.

Short execution time has prece-
dence over long execution time.
This is a low priority criterion.

Adjacency. Include the same
program modules activated
adjacent in time, or using the
same data.

Very low priority rule, used only
when other criteria are not
available.

Figure 2.5.12-37 Grouping Criteria for Packaging

(4) The following items are isolation criteria for packaging:

• Optional Functions: Separate optional function modules into distinct
programs.

• One-shot Functions: Separate modules that are minimally coupled and
used only once into distinct programs (e.g., initialization).

• Sorts: Separate sort function modules into distinct programs; separate
modules applied on input or output sides of a sort into separate
programs; the criteria for grouping modules may take priority.

• Data: Separate modules into programs where any resulting intermediate
files between programs will be of lowest volume and simplest data
structure. The criteria for grouping modules may take priority.

(5) When addressing operator messages, divide all operator messages into infor-
mation messages and console messages. Only display those messages, which
require operator intervention or affect the continued operation of a run stream
on the console and, if a run control print log is available, then route all other
messages to this log. Keep operator messages to a minimum and make sure
all of them are documented.

page 50 2.5 Systems Development

2.5.12.8 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

2.5.12.9
(12-16-2021)
Structured
Design/Programming
Interface - Structure
Charts

(1) After structure charts are completed and pseudocode writing has begun, begin
development of the interface between the design and programming.

(2) The designers and programmers work together at this point to finalize the
design of individual modules prior to the start of actual logic diagramming and
coding. There are different points of view as to when to begin coding the
program modules as noted below:

• Achieve maximum cohesion and factoring, and minimum coupling by
completing the structure chart and the pseudocode prior to the actual
coding of each module. Although the design is considered complete at
this point, the most important advantage of this approach is that the
design is more easily altered and refined before code is written.
Modules can be added to, or removed from, the structure chart as a
result of specification changes in the FSP or programming consider-
ations. Such changes must not involve a major redesign of the system.

• It may, however, be more expedient to develop source code for the
higher levels of the structure chart before pseudocode is developed for
the lower levels.

2.5.12.10
(12-16-2021)
Software Release/
Maintenance/Evolution

(1) The software development lifecycle has four steps:

1. Requirements Gathering and Analysis:
• Create a Problem Statement: Implement the initial problem statement
in accordance with the project’s IRS business process requirement, and
ensure it is included in your project charter. Update the problem
statement during the life of the project when it is necessary.
• Use Case Generation: Use cases capture the goal of an action, and is
a trigger event that starts a process including: inputs, outputs, errors, and
exceptions. Use cases are often written in the form of an actor.
• Feature List Creation: A set of program features that you will derive
from the problem statement, and will consist of your initial requirements.

2. Design:
• Breaking the problem into subsystems or modules
• Mapping your features, subsystems, and use cases to domain objects
• Creating abstractions
• Identifying the programs’ objects, methods, and algorithms

3. Implementation and Testing:
• Implement the iteration
• Test the iteration

4. Release, Maintenance, and Evolution:
• Perform the final acceptance testing and release requirements.

Design Techniques and Deliverables 2.5.12 page 51

#
#
#

Cat. No. 35415P (12-16-2021) Internal Revenue Manual 2.5.12.10
Any line marked with a #
is for Official Use Only

page 52 2.5 Systems Development

This Page Intentionally Left Blank

2.5.12.10 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.12-1 (12-16-2021)
Example of a Structure Chart

Design Techniques and Deliverables 2.5.12 page 53

Cat. No. 35415P (12-16-2021) Internal Revenue Manual Exhibit 2.5.12-1
35415021Any line marked with a #

is for Official Use Only

Exhibit 2.5.12-2 (12-16-2021)
Example of Page 1 of a Structure Chart using a Parameter Table

page 54 2.5 Systems Development

Exhibit 2.5.12-2 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415022 Any line marked with a #

is for Official Use Only

Exhibit 2.5.12-2 (Cont. 1) (12-16-2021)
Example of Page 1 of a Structure Chart using a Parameter Table

Parameter Table

No. Input Output

1. PURPOSELY LEFT BLANK VALID-TRANS-REC, END-OF-VALID-TRANS-
IND

2.
VALID-TRANS-REC

MATCHED-TRANS-MASTER-REC, NO-
MATCH-TRANS-IND

3. MATCHED-TRANS-MASTER-REC UPDATED-MASTER-REC

4. UPDATED-MASTER-REC PURPOSELY LEFT BLANK

5. TRANS-KEY MASTER-REC, NO-MATCH-TRANS-IND

6. VALID-TRANS-REC, MASTER-REC MATCHED-TRANS-MASTER-REC

7. VALID-TRANS-REC PURPOSELY LEFT BLANK

8. MATCHED-TRANS-MASTER-REC UPDATED-MASTER-REC

9. UPDATED-MASTER-REC PURPOSELY LEFT BLANK

10. VALID-TRANS-REC NO-MATCH-TRANS-REPORT-REC

11. NO-MATCH-TRANS-REPORT-REC PURPOSELY LEFT BLANK

12. DEBIT-SECTION, MONEY-BALANCE, TRANS-
DATA

DEBIT-SECTION, MONEY-BALANCE, LAST-
POSTING-DATE

13. CREDIT-SECTION, MONEY-BALANCE,
TRANS-DATA

CREDIT-SECTION, MONEY-BALANCE,
LAST-POSTING-DATE

Design Techniques and Deliverables 2.5.12 page 55

Cat. No. 35415P (12-16-2021) Internal Revenue Manual Exhibit 2.5.12-2
Any line marked with a #
is for Official Use Only

Exhibit 2.5.12-3 (12-16-2021)
Contents and Format of Analysis/Design Cross-Reference List

page 56 2.5 Systems Development

Exhibit 2.5.12-3 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
35415023 Any line marked with a #

is for Official Use Only

Exhibit 2.5.12-4 (12-16-2021)
Acronym/Terms

Acronym Definition

GOF Gang of Four

IEEE-SA Institute of Electrical and Electronics Engineers Standards Association
(IEEE-SA)

FISMA Federal Information Security Modernization Act

FOIA Freedom of Information Act

IMF Individual Master File

SRS Software Requirement Specification

SSDF Secure Software Development Framework

Design Techniques and Deliverables 2.5.12 page 57

Cat. No. 35415P (12-16-2021) Internal Revenue Manual Exhibit 2.5.12-4
Any line marked with a #
is for Official Use Only

Exhibit 2.5.12-5 (12-16-2021)
Terms/Definitions

Terms/Definitions

Terms Definition

Algorithm An algorithm is step-by-step procedure for solving a problem.

Architecture Description
Languages

A language that provides syntax and semantics for defining a software
architecture. The notation specification provides features for modeling
a software system’s conceptual architecture.

Abstraction
Abstraction is a tool that enables a designer to consider a component
at a abstract level without the concerns of the internal details of the
implementation.

Inheritance
Inheritance is a mechanism that permits new classes to be created out
of existing classes by extending and refining its capabilities.

Interface
Software interconnections that allow a device, program, or a person to
interact.

Object Design
A design model is developed based on both the models developed in
the system analysis phase, and the architecture designed in the
system design phase.

Object Model Displays the elements in a software application in terms of objects.

Refactor A systematic process of improving code without creating new function-
ality. Refactoring can transform unorganized code into clean code and
simple design.

Requirements Visualization
Methodology

An iterative process of collaboration, design, and feedback.

Simulations
Simulations are models that imitate the proposed product or software
solution. Simulations can be low, medium, or high in fidelity, but users
are able to interact with the product.

page 58 2.5 Systems Development

Exhibit 2.5.12-5 Internal Revenue Manual Cat. No. 35415P (12-16-2021)
Any line marked with a #
is for Official Use Only

	Manual Transmittal
	 Table of Contents
	2.5.12.1 Program Scope and Objectives
	 2.5.12.1.1 Background
	 2.5.12.1.2 Authority
	 2.5.12.1.3 Roles and Responsibilities
	 2.5.12.1.4 Program Management and Review
	 2.5.12.1.5 Acronyms/Terms
	 2.5.12.1.6 Terms/Definitions
	 2.5.12.1.7 Related Resources
	2.5.12.2 System and Software Developer’s Best Practice Overview
	 2.5.12.2.1 Enterprise Architecture (EA) Application Design Overview
	2.5.12.3 Software Design
	 2.5.12.3.1 Design Characteristics
	 2.5.12.3.2 Software Design and Structure
	 2.5.12.3.2.1 Software Design Levels
	 2.5.12.3.3 Software Modeling
	 2.5.12.3.4 Software Design Refinement Principles
	 2.5.12.3.5 Heuristic Evaluation
	 2.5.12.3.6 Modular Decomposition
	 2.5.12.3.7 Software Design Patterns Overview
	 2.5.12.3.8 Software Design Patterns - Best Practices for Developers
	 2.5.12.3.9 Object-Oriented Analysis and Design Process
	 2.5.12.3.9.1 Use Case Diagrams
	2.5.12.4 User Interface (UI) Design Principles
	 2.5.12.4.1 User Interface Design Process
	 2.5.12.4.2 Design Wireframes and Mock-ups
	 2.5.12.4.2.1 Prototype Design Best Practices
	 2.5.12.4.2.2 Prototyping Benefits Throughout the Enterprise Life Cycle (ELC)
	2.5.12.5 Structure Chart Overview
	 2.5.12.5.1 Structure Chart Best Practices
	 2.5.12.5.2 Transform Analysis/Transaction Analysis Overview
	 2.5.12.5.2.1 Transform Analysis Best Practices
	 2.5.12.5.2.2 Transaction Analysis Best Practices
	 2.5.12.5.2.3 Information Specification
	 2.5.12.5.2.4 Structure Chart Refinement
	 2.5.12.5.2.4.1 Cohesion
	 2.5.12.5.2.4.2 Coupling
	2.5.12.6 Structure Chart Conventions and Standards
	 2.5.12.6.1 Module Numbering
	 2.5.12.6.1.1 Multiple Page Structure Charts
	 2.5.12.6.1.2 Pre-existing (Common) Modules
	 2.5.12.6.2 Module Notations
	 2.5.12.6.2.1 Special Module Call Notation
	 2.5.12.6.2.1.1 Decision
	 2.5.12.6.2.1.2 Iteration
	 2.5.12.6.2.2 Lexical Inclusion
	 2.5.12.6.2.3 Pre-Existing Module Notation
	 2.5.12.6.2.4 File Notation
	 2.5.12.6.3 Structure Chart Common Environment
	 2.5.12.6.4 Structure Chart Interface Parameters (Couples)
	 2.5.12.6.4.1 Interface Parameter Names
	 2.5.12.6.4.2 Identifying Data and Control Parameters
	 2.5.12.6.5 Sorts
	 2.5.12.6.6 Analysis/Design Cross-Reference List
	2.5.12.7 Structure Chart Module Specification
	 2.5.12.7.1 Pseudocode
	 2.5.12.7.1.1 Pseudocode Best Practices
	 2.5.12.7.2 Module Specification Development/Standards
	 2.5.12.7.3 Pseudocode-Conventions/Standards
	 2.5.12.7.3.1 Reusable (Common) Modules
	 2.5.12.7.3.2 Organization and Maintenance
	2.5.12.8 Structure Charts Packaging and Preprogramming Considerations
	2.5.12.9 Structured Design/Programming Interface - Structure Charts
	2.5.12.10 Software Release/Maintenance/Evolution
	2.5.12-1 Example of a Structure Chart
	2.5.12-2 Example of Page 1 of a Structure Chart using a Parameter Table
	2.5.12-3 Contents and Format of Analysis/Design Cross-Reference List
	2.5.12-4 Acronym/Terms
	2.5.12-5 Terms/Definitions

