
EFFECTIVE DATE

(09-27-2022)

PURPOSE

(1) This transmits revised IRM 2.5.13, Systems Development, Database Design Techniques and
Deliverables.

BACKGROUND

(1) This IRM 2.5.13 transmits the revised standards, guidelines, and other controls for documenting
database systems. This IRM describes techniques for analyzing, designing, and modeling Internal
Revenue Service (IRS) databases.

MATERIAL CHANGES
(1) Effect on Other Documents, Changed the paragraph based on new requirement in IRM 1.11.2

(2) 2.5.13.1, Moved the role for DB architects under “Roles and Responsibility”

(3) 2.5.13.1.1 (1)(2), Removed and replaced better information because previous paragraphs did not
reflect requirements of the Background subsection according to IRM 1.11.2.1.1

(4) 2.5.13.2, Replaced period with a comma

(5) 2.5.13.1.7, Added the following resources:

• IRM 2.150.2 Configuration Management (CM) Process
• San, Hirako. MongoDB Best Practices: Build Fault Tolerant Applications link
• SQL Server Security Best Practices for taking on the SQL DBA Role as a developer link
• PostgreSQL website link
• E2E Cloud, Best Practices for PostgreSQL Database, May 19 2021 website link

(6) 2.5.13.1.3 (13), Added a link for IRM 1.1.12 for Information Technology, Staffing Responsibilities

(7) 2.5.13-3

(8) 2.5.13.4, Removed extra space in front of Modifications/Redesign

(9) 2.5.13.4(6), EDMO role was moved to the Roles and responsibilities subsection

(10) 2.5.13.4.3.1 (2), Changed ″interaction with,″ to ″interaction with″ for better clarity.

(11) 2.5.13.6.8.4.2 (1)(f)(g), Changed sentences to eliminate wordiness and more clarity

(12) 2.5.13.7.2, Added Structured Query Language (SQL) Server Overview

(13) 2.5.13.7.2.1, Added T-SQL Function Types

(14) 2.5.13.7.2.2 (1), Changed ″The are″ to ″The seven categories of data types are the following″ for
more clarity

(15) 2.5.13.7.2.2 (1) (a-h), Added SQL Server Data Types

(16) 2.5.13.7.2.3, Added SQL Server and Transact-SQL (T-SQL) Best Practices

MANUAL
TRANSMITTAL 2.5.13

Department of the Treasury

Internal Revenue Service
SEPTEMBER 27, 2022

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13
Any line marked with a #
is for Official Use Only

(17) 2.5.13.7.4 (1), Added MongoDB Overview

(18) 2.5.13.7.4.1 (1), Added MongoDB Features and Benefits over RDBMS

(19) 2.5.13.7.4.2 (1), Added Types of NoSQL Database Management Systems (DBMS)

(20) 2.5.13.7.4.3 (1), Added MongoDB NoSQL Best Practices

(21) 2.5.13.7.4.3.1 (1), Added MongoDB Security Best Practices

(22) 2.5.13.7.4.3.1.1 (1), Added MongoDB Authentication and Authorization

(23) 2.5.13.7.5, Relocated “Big Data Models and No Structured Query Language (NoSQL) Databases
Overview” under MongoDB because it was in an incorrect subsection

(24) 2.5.13.7.7 (1)(2)(3), Added more features as an overview for PostgreSQL

(25) 2.5.13.7.7 (4), Added a table with the primary differences between PostgreSQL and MongoDB

(26) 2.5.13.7.8, Added PostgreSQL Data Types

(27) 2.5.13.7.9, Added PostgreSQL Best Practices

(28) Figure 2.5.13-3, Added a caption

(29) Figure 2.5.13-5, Added a caption

(30) Figure 2.5.13-6, Added a caption

(31) Figure 2.5.13-38, Changed “creates ”to “create”

(32) Exhibit 2.5.13-10 Acronyms and Terms, Added the following:

• BSON - Binary and JSON
• CRUD - Create, Read, Update and Delete
• CSV - Comma Separated Value
• MIB - Management Information Base
• PID - Process Identifier
• PKI - Public Key Identifier
• RBAC - Role Based Access Control
• SAN - Subject Alternative Name
• SDLC - System Development Life Cycle
• SIEM - Security Information and Event Management
• SSD - Solid State Disk
• TLS - Transport Layer Security
• TTL - Time To Live

(33) Exhibit 2.5.13-11 Terms and Definitions, Added the following:

Shard
A single mongod instance or replica set that stores some portion of
a sharded cluster’s total data set. In production, all shards should
be replica sets

Sharded cluster
The set of nodes comprising a sharded MongoDB deployment. A
sharded cluster consists of config servers, shards, and one or
more mongos routing processes.

Manual Transmittal Cont. (1)

2.5.13 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Single-master replication
A replication topology where only a single database instance

accepts writes. Single-master replication ensures consistency and is
the replication topology employed by MongoDB.

Simulation To represent the functioning of one system by another.

Simple Object Access Protocol
A messaging protocol for exchanging structured information via web
services in a computer network.

Storage engine
The part of a database that is responsible for managing how data is
stored and accessed, both in memory and on disk. Different storage
engines perform better for specific workloads.

Subject Alternative Name

Subject Alternative Name (SAN) is an extension of the X.509 certifi-
cate which allows an array of values such as IP addresses and
domain names that specify which resources a single security certifi-
cate may secure.

EFFECT ON OTHER DOCUMENTS

IRM 2.5.13, dated 12-23-2021, is superseded and supplements IRM 2.5.1 Information Technology, System
Development.

AUDIENCE

The audience intended for this transmittal is personnel responsible for engineering, developing, or maintain-
ing Agency software systems identified in the Enterprise Architecture. The mandates in this manual apply to all
IRS production, development, and test database systems. This IRM for engineering, development, designing,
and maintenance include work performed by government employees and contractors.

Nancy A. Sieger

Chief Information Officer

Manual Transmittal Cont. (2)

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13
Any line marked with a #
is for Official Use Only

Manual Transmittal2.5.13

Database Design Techniques and Deliverables

Table of Contents Table of Contents

2.5.13.1 Program Scope and Objectives

2.5.13.1.1 Background

2.5.13.1.2 Authority

2.5.13.1.3 Roles and Responsibilities

2.5.13.1.4 Program Management and Review

2.5.13.1.5 Program Controls

2.5.13.1.6 Acronyms/Terms/Definitions

2.5.13.1.7 Related Resources

2.5.13.2 Internal Revenue Service (IRS) Relational Database Design Guidance

2.5.13.3 Data Modeling Overview

2.5.13.4 Database Design Overview

2.5.13.4.1 Types of Database Models

2.5.13.4.2 Business Analysis Best Practices

2.5.13.4.2.1 Database Design - Mission, Functions and Operations

2.5.13.4.2.2 Identify Tasks Performed and Data Usage

2.5.13.4.2.3 Identify Task/Data Relationships

2.5.13.4.2.4 Develop a List of Constraints

2.5.13.4.2.5 Develop a List of Potential Future Changes

2.5.13.4.3 Data Modeling Design

2.5.13.4.3.1 Identify Local Views of the Data

2.5.13.4.3.2 Formulate Entities/Entity Modeling

2.5.13.4.3.3 Specify Relationships

2.5.13.4.3.4 Add Descriptive Attributes

2.5.13.4.3.5 Consolidate Local Views and Design Perspectives

2.5.13.4.3.6 Present Data Model

2.5.13.4.3.7 Verify Data Model

2.5.13.5 Physical Database Design

2.5.13.5.1 Determine the User’s Requirements

2.5.13.5.2 Determine the Processing Environment

2.5.13.5.3 Select DBMS Software

2.5.13.5.4 Design the Physical Placement of Data

2.5.13.5.5 Perform Sizing of Data

2.5.13.5.6 Consider Security and Recovery

2.5.13.6 Deliverables

2.5.13.6.1 Decision Analysis and Description Forms

Part 2
Chapter 5 Systems Development

IRM 2.5.13

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13
Any line marked with a #
is for Official Use Only

2.5.13.6.2 Task Analysis and Description Forms

2.5.13.6.3 Task/Data Element Usage Matrix

2.5.13.6.4 Data Models

2.5.13.6.5 Entity-Attribute Lists

2.5.13.6.6 Data Definition Lists

2.5.13.6.7 Physical Database Specifications Document

2.5.13.6.7.1 Physical Database Names

2.5.13.6.7.2 Data Structure/Sizing

2.5.13.6.7.3 Data Placement

2.5.13.6.8 Database Schema Refactoring Overview

2.5.13.6.8.1 Evolutionary Database Techniques

2.5.13.6.8.2 Database Refactoring Categories

2.5.13.6.8.3 Common Indicators for Refactoring

2.5.13.6.8.4 Database Refactoring Best Practices

2.5.13.6.8.4.1 Database Refactoring Preparation Process

2.5.13.6.8.4.2 Database Refactoring Strategies

2.5.13.7 Database Management System Software Supported by the IRS

2.5.13.7.1 IBM Enterprise Database 2 Universal Database (DB2 UDB) Overview

2.5.13.7.1.1 DB2 Physical Objects

2.5.13.7.1.2 DB2 Performance Standards and Guidelines

2.5.13.7.1.2.1 IRS DB2 Tables - Designing for Performance

2.5.13.7.2 Structured Query Language (SQL) Server Overview

2.5.13.7.2.1 T-SQL Function Types

2.5.13.7.2.2 SQL Server Data Types

2.5.13.7.2.3 SQL Server and Transact-SQL (T-SQL) Best Practices

2.5.13.7.3 MySQL Overview

2.5.13.7.4 MongoDB Overview

2.5.13.7.4.1 MongoDB Features and Benefits over RDBMS

2.5.13.7.4.2 Types of NoSQL Database Management Systems (DBMS)

2.5.13.7.4.3 MongoDB NoSQL Best Practices

2.5.13.7.4.3.1 MongoDB Security Best Practices

2.5.13.7.4.3.1.1 MongoDB Authentication and Authorization

2.5.13.7.5 Big Data Models and No Structured Query Language (NoSQL) Databases Overview

2.5.13.7.6 Oracle Database Design Overview

2.5.13.7.6.1 Oracle - Design for Performance Best Practices

2.5.13.7.6.2 Relational Database Design Rules and SQL Coding Standards

2.5.13.7.7 PostgreSQL Overview

2.5.13.7.8 PostgreSQL Data Types

2.5.13.7.9 PostgreSQL Best Practices

Part 2
Chapter 5 Systems Development

IRM 2.5.13

2.5.13 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

2.5.13.8 Database Security Design

2.5.13.8.1 Database Design Security Best Practices

2.5.13.9 IRS Extensible Markup Language (XML) Overview

2.5.13.9.1 IRS Extensible Markup Language (XML) Naming and Design Rules

Exhibits
2.5.13-1 Guidelines for Decision Analysis and Description Forms

2.5.13-2 Guidelines for Task Analysis and Description Forms

2.5.13-3 Sample Task/Data Element Matrix

2.5.13-4 Guidelines for Constructing Data Structure Diagrams (DSD)

2.5.13-5 Relationship between Two Entities-Classes

2.5.13-6 Explanation of Hierarchical Structure (One-to-Many) and (Many-to-Many) Relationships

2.5.13-7 Guidelines for Constructing Entity Relationship Diagrams (ERD)

2.5.13-8 Sample Data Definition List

2.5.13-9 Summary of Access Methods

2.5.13-10 Acronyms and Terms

2.5.13-11 Terms/Definitions

2.5.13-12 IRS Enterprise Life Cycle (ELC) Data Model Compliance Standards

2.5.13-13 Relational Database Design Constancy Rules - Types of Data Storing in Table

2.5.13-14 FIPS 127-2 Database Construct Sizing

Part 2
Chapter 5 Systems Development

IRM 2.5.13

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13
Any line marked with a #
is for Official Use Only

2.5.13.1
(09-27-2022)
Program Scope and
Objectives

(1) Scope: This IRM establishes standards, guidelines, and other controls for
documenting database systems developed for the Internal Revenue Service.
This manual describes techniques for analyzing, designing, and modeling
databases. This development includes that work performed by government
employees as well as contractors. One of the core competencies IRS database
engineers and database designers must have is the following:

a. Operations - This is the combined sum of all the skills, knowledge, and
values of the Agency. Operations are the building blocks for designing,
testing, building, and operating any system with scalability and depend-
ability requirements.

(2) Objectives: The main objectives of designing databases for the IRS is to
produce logical and physical design models of the proposed new database
system. The database design is the organization of data according to a
database model and techniques pertaining to the following:

a. Analysis
b. Design
c. Description
d. Specification of data designed for automated business data processing

using models to enhance communication between developers and
customers

(3) Purpose: To establish quality database designs with the outcome resulting in
good consistency of data, elimination of data redundancy, efficient execution of
queries, and produce robust, high performance applications.

(4) Audience: The target audience for this manual is government employee and
contractor data architects/analyst, database designer/administrators, develop-
ers, Information Technology engineers, and IT managers.

(5) Policy Owner: The Application Development (AD) Associate, Chief Information
Officer (ACIO), establishes all Information Technology internal controls for this
IRM.

(6) Program Owner: The AD, Technical Integration Office (TIO), Application
Standards and Quality (ASQ) is the internal organization that is responsible for
the administration, procedures, and updates related to this program. The TIO,
Application Standards and Quality branch works closely with key stakeholders
from Enterprise Operations (EOps), Data Management Services & Support
(DMSS) when updating IRS policies, and industry standards related to all
database initiatives.

(7) Primary Stakeholders:

a. Application Development (AD)
b. Enterprise Operations (EOps), Data Management Services & Support

(DMSS)
c. Information Technology, Cyber Security

(8) Program Goals: Performing appropriate database design procedures are
critical to meet the IRS databases’ target-state for scalability, security, perfor-
mance, and reliability requirements.

Database Design Techniques and Deliverables 2.5.13 page 1

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.1
Any line marked with a #
is for Official Use Only

2.5.13.1.1
(09-27-2022)
Background

(1) This IRM enables the IRS to meet federal requirements by providing approved
National Institute of Standards and Technology (NIST) and IRS standards and
procedures for developing and designing database systems which will allow
greater control over the application development process.

(2) The Office of Management and Budget (OMB) policies require that all agencies
must comply with NIST guidance, unless they are national security programs
and systems. NIST produces the guidelines to assist federal agencies with
meeting the requirements of the Federal Information Security Management Act
(FISMA) and the Federal Information Processing Standards (FIPS).

(3) Some examples of standard practices for database design applies to establish-
ing the following:

• Database structure and segmentation
• Access methods
• Procedures to govern aspects of application design
• Secondary indexing
• Logical relationships
• Different ways in which application programs use the database
• Information Technology Security requirements and controls as specified

in NIST Special Publication (SP) 800-53 Rev. 5 for Target Architecture

2.5.13.1.2
(09-27-2022)
Authority

(1) The Clinger-Cohen Act of 1996

(2) 21st Century Integrated Digital Experience Act (IDEA), December 2018

(3) Federal Information Security Modernization Act of 2014, FISMA 2014

(4) Government Accountability Office (GAO)

(5) Government Performance Results Act (GPRA)

(6) Administrator of the Government Service Administration (GSA)

(7) Office of Management and Budget (OMB)

(8) Presidential American Technology Council, 2017

(9) Treasury Inspector General Tax Administration (TIGTA)

(10) International Standard ISO -11179/(ISO/IEC 11179)

2.5.13.1.3
(09-27-2022)
Roles and
Responsibilities

(1) Application Development’s chain of command include:

a. Commissioner: Oversees and provides overall strategic direction for the
IRS. The Commissioner’s and Deputy Commissioner’s main focus is for
the IRS’s services programs, enforcement, operations support, and orga-
nizations. Additionally, the Commissioner’s vision is to enhance services
for the nation’s taxpayers, balancing appropriate enforcement of the
nation’s tax laws while respecting taxpayers’ rights.

b. Deputy Commissioner, Operation Support (DCOS): Oversees the op-
erations of Agency-Wide Shared Services: Chief Financial Officer, Human
Capital Office, Information Technology, Planning Programming and Audit
Oversight and Privacy, and Governmental Liaison and Disclosure.

page 2 2.5 Systems Development

2.5.13.1.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

c. Chief Information Officer (CIO): The CIO leads Information Technology,
advises the Commissioner on Information Technology matters, manages
all IRS IT resources, and is responsible for delivering and maintaining
modernized information systems throughout the IRS. The Deputy Chief
Information Officer for Operations assists the Chief Technology Officer
(CTO).

d. Application Development (AD), Associate Chief Information Officer
(ACIO): The AD ACIO reports directly to the CIO; oversees and ensures
the quality of: building, unit testing, delivering, and maintaining integrated
enterprise-wide applications systems to support modernized and legacy
systems in the production environment to achieve the mission of the
service.

e. AD Deputy CIO (DCIO): The AD Deputy ACIO reports directly to the AD
ACIO and is responsible for:
• Leading all strategic priorities to enable the AD Vision, IT Technology
Roadmap and the IRS future state
• Executive planning, and management of the development organization
which ensures all filing season programs are developed, tested, and
delivered on-time and within budget

(2) Application Development: Responsible for building, testing, delivering, and
maintaining integrated information applications systems, e.g., software
solutions, to support modernized systems and production environment to
achieve the mission and objectives of the service. Additionally, AD does the
following:

a. Works in partnership with customers to improve the quality of the IRS
information systems, products, and services.

b. Maintains the effectiveness and enhance the integration of IRS installed
base production systems and infrastructure while modernizing core
business systems and infrastructure.

c. Establishes and maintains rigorous contract and fiscal management,
oversight, quality assurance, and program risk management processes to
ensure that strategic plans and priorities are being met.

d. Provides quality assessment/assurance of deliverables and processes.
e. Creates oversight support of enterprise modernization goals in coordina-

tion with Information Technology HR initiatives and policy.
f. Responsible for delivering filing season projects, and implementing

Economic Stimulus changes.
g. AD has the following Domains:

• Compliance
• Corporate Data (CD)
• Customer Service (CS)
• Data Delivery Service (DDS)
• Delivery Management; Quality Assurance (DMQA)
• Identity & Access Management (IAM)
• Internal Management (IA)
• Submission Processing (SP)
• Technical Integration Organization (TIO)

(3) Director, Compliance: Provides executive direction for a wide suite of Compli-
ance domain focused applications and oversee the IT Software Development
organization to ensure the quality of production ready applications.

Database Design Techniques and Deliverables 2.5.13 page 3

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.1.3
Any line marked with a #
is for Official Use Only

a. Directs and oversees a unified cross-divisional approach to compliance
strategies needing collaboration pertaining to the following:

• Abusive tax avoidance transactions needing a coordinated response
• Cross-divisional technical issues
• Emerging issues
• Service-wide operational procedures

(4) Director, AD Corporate Data: Directs and oversees the provisioning of au-
thoritative databases, refund identification, notice generation, and reporting.

(5) Director, Customer Service: Directs and oversees Customer Service Support
for service and communication with internal and external customers and
providing taxpayers with self-service online capabilities.

a. Customer Service Domain’s applications and systems provide:
• Tax law assistance
• Taxpayer education
• Access to taxpayer account data
• Maintenance of modernized information systems that meet the cus-
tomer’s needs for researching, updating, analyzing, and managing
taxpayer accounts

b. Services to internal and external customers are provided through five
primary means:
• Centralized Contact Centers (for telephone, written, and electronic
inquiries)
• Self-service applications (via the telephone and Internet)
• Field Assistance (for walk-in assistance)
• Web Services
• Management of Taxpayer Accounts

(6) Director, Data Delivery Services: Oversees and ensures the quality of data
with repeatable processes in a scalable environment. The Enterprise Data
Strategy is to transform DDS into a data centric organization dedicated to
deliver Data as a Service (DaaS) through:

• Innovation - new methods, discoveries
• Renovation - streamline or automate
• Motivation - incent and enable individuals

(7) Director, Delivery Management & Quality Assurance (DMQA):

• Executes the mission of DMQA by ensuring AD has a coordinated,
cross-domain, and cross-organizational approach to delivering AD
systems and software applications

• Reports to the AD ACIO and chairs the AD Risk Review Board.
• Chairperson, Configuration Control Board, see IRM 2.5.1.2.2.2
• Government Sponsor, Configuration Control Board, see IRM 2.5.1.2.2.2

(8) Director, Identity & Access Management (IAM) Organization: Provides
oversight and direction for continual secure online interaction by verifying and
establishing an individual’s identity before providing access to taxpayer infor-
mation “identity proofing” while staying compliant within federal security
requirements.

(9) Director, Internal Management: Provides oversight for the builds, tests, deliv-
eries, refund identification, notice generation, and reporting.

page 4 2.5 Systems Development

2.5.13.1.3 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

(10) Director, Submission Processing: Provides oversight to an organization of
over 17,000 employees, comprised of: a headquarters staff responsible for de-
veloping program policies and procedures, five W&I processing centers, and
seven commercially operated lockbox banks. Responsible for the processing of
more than 202 million individual and business tax returns.

(11) Director, Technical Integration Office: Provides strategic technical organiza-
tion oversight ensuring applicable guidance, collaboration, and consolidation of
technical integration issues and quality assurance for the Applications Develop-
ment portfolio.

(12) Information Technology (IT), Cybersecurity: Cybersecurity manages the IRS
IT Security program in accordance with the Federal Information Security Mod-
ernization Act of 2014 (FISMA) with the goal of delivering effective and
professional customer service to business units and support functions within
the IRS. These procedures are done as the following:

a. Provide valid risk mitigated solutions to security inquisitions.
b. Respond to incidents quickly and effectively in order to eliminate risks/

threats.
c. Ensure all IT security policies and procedures are actively developed and

updated.
d. Provide security advice to IRS constituents and monitor IRS robust

security program for any required modifications or enhancements.
e. Created the Information Technology Security Program Plan which repre-

sents strategic alignment to the IRS Strategic Plan 2018 - 2022, the IT
Modernization Plan, and the IRS Cybersecurity Five-year Strategic Plan.
The purpose is for the enhancement of all IT investments.

(13) Information Technology, Enterprise Operations, Enterprise Data Manage-
ment Organization (EDMO): Establishes and disseminates standards for
conceptual, logical, and physical data modeling.

(14) Database (DB) Architect: The DB Architect is associated with the System De-
velopment Life Cycle (SDLC) process, and must define detailed database
designs by determining tables, indexes views, constraints, triggers, stored pro-
cedures tablespaces or storage parameters, what data, and how the data
elements interrelate. However, the Architect is not involved in the daily opera-
tions of the system once it is deployed.

(15) For more information on the mission and responsibilities of Information Tech-
nology, Organization and Staffing see IRM 1.1.12.

2.5.13.1.4
(09-27-2022)
Program Management
and Review

(1) Program Reports: The IRS Enterprise Architecture Office (EAO) work in
alliance with all IRS organizations to provide guidance for Information Technol-
ogy application design patterns for standard solutions. This EAO information
assist IT managers to plan, and architect all IT solutions, and manage invest-
ments in business and technology programs. EA facilitates the EA Review
cycle and ELC Compliance Review process to ensure all reports/artifacts
relating to the Enterprise Life Cycle are in compliance.

(2) Program Effectiveness: The IRS Enterprise Data Management Office
(EDMO) implements, updates, and distributes data standards and guidelines to
IRS executive leadership.

Database Design Techniques and Deliverables 2.5.13 page 5

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.1.4
Any line marked with a #
is for Official Use Only

2.5.13.1.5
(09-27-2022)
Program Controls

(1) The IRS Enterprise Data Management Office (EDMO) must review all concep-
tual, logical and physical data models using the standards-based checklists
which mandates the level of detail necessary for all data model.

2.5.13.1.6
(09-27-2022)
Acronyms/Terms/
Definitions

(1) For Acronyms and Terms, see Exhibit 2.5.13-10

(2) For Terms and Definitions, see Exhibit 2.5.13-11

2.5.13.1.7
(09-27-2022)
Related Resources

(1) The resources below provide information for system development documenta-
tion standards from National Institute of Standards and Technology (NIST), IRS
IRMs, and the IRS organizations’ SharePoint repository sites/Uniform Resource
Locators (URLs).

• IRM 2.5.1 System Development, is the overarching IRM for the System
Development program within the IRS

• IRM 10.8.21 IRS Information Technology (IT) Security Database
Security Policy

• IRM 10.5.1 Privacy Compliance and Assurance (PCA) Program
• IRM 10.8.1 Information Technology, Policy and Guidance
• IRM 10.8.6 Application Security and Development
• IRM 2.150.2 Configuration Management (CM) Process
• NIST SP 800-53 Rev. 5, Security and Privacy Controls for Federal Infor-

mation Systems and Organization
• NIST SP 800-122, Guide to Protecting the Confidentiality of Personally

Identifiable Information (PII)
• NIST SP 800-64, Security Considerations for System Development Life

Cycle: Information Security, Revision 2 October 2008
• NIST SP 1500, Big Data Interoperability Framework: Volume 4, Security

and Privacy
• NIST Big Data Program: NIST Big Data Public Working Group, https://

bigdata.nist.gov/home.php
• IRS Enterprise Data Standards and Guidelines (EDSG), see IRM 2.5.

13.2
• San, Hirako. MongoDB Best Practices: Build Fault Tolerant Applications
• Online Oracle Database Development Guide see, https://docs.oracle.

com/en/database/oracle/oracle-database/12.2/adfns/toc.htm
• DB2 see, https://www.tutorialspoint.com/db2/db2_introduction.htm
• DB2 Design, see https://www.ibm.com/developerworks/data/library/

techarticle/dm-0408whitlark/index.html
• Khang, Alex. Relational Database Professional Handbook: Design Rules

and SQL Coding Conventions Guidelines, ISBN-13 979-8612037262.
February 10, 2020

• SQL Server, see https://www.sqlservertutorial.net/getting-started/what-is-
sql-server/

• SQL Server Security Best Practices, Best practices for taking on the
SQL Server DBA role as a developer (mssqltips.com)

• PostgreSQL see, https://www.postgresql.org/docs/9.5/tutorial-arch.html
• E2E Cloud, Best Practices for PostgreSQL Database, May 19, 2021
• Scott W. Ambler and Pramod J. Sadalage. Refactoring Databases: Evo-

lutionary Database Design, ISBN-0-321-29353-3. August 2007
• Designing Data-Intensive Applications: The Big Ideas Behind Reliable,

Scalable, and Maintainable Systems, https://github.com/ept/ddia-
references

page 6 2.5 Systems Development

2.5.13.1.5 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

https://bigdata.nist.gov/home.php
https://bigdata.nist.gov/home.php
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/adfns/toc.htm
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/adfns/toc.htm
https://www.tutorialspoint.com/db2/db2_introduction.htm
https://www.ibm.com/developerworks/data/library/techarticle/dm-0408whitlark/index.html
https://www.ibm.com/developerworks/data/library/techarticle/dm-0408whitlark/index.html
https://www.sqlservertutorial.net/getting-started/what-is-sql-server/
https://www.sqlservertutorial.net/getting-started/what-is-sql-server/
https://www.mssqltips.com/sqlservertip/1652/best-practices-for-taking-on-the-sql-server-dba-role-as-a-developer/
https://www.mssqltips.com/sqlservertip/1652/best-practices-for-taking-on-the-sql-server-dba-role-as-a-developer/
https://www.postgresql.org/docs/9.5/index.html
https://github.com/ept/ddia-references
https://github.com/ept/ddia-references

2.5.13.2
(09-27-2022)
Internal Revenue Service
(IRS) Relational
Database Design
Guidance

(1) Enterprise Data Standards and Guidelines (EDSG) provides standards and
rules for the development and modification of the names, definitions, and
metadata for classes, attributes, and data models, that pertain to the Modern-
ized Environment (ME) data elements located in IRS’ modernization system
data dictionaries, data models, and Current Production Environment (CPE)
data elements.

(3) See Figure 2.5.13-1 for illustration of the Design Rules of Relational Database.

Database Design Techniques and Deliverables 2.5.13 page 7

#
#
#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.2
Any line marked with a #
is for Official Use Only

Figure 2.5.13-1

2.5.13.3
(09-27-2022)
Data Modeling Overview

(1) Data modeling is the process of creating a data model for the data to be
stored in a database. This data model emphasizes on what data is needed,
and how it must be organized instead of what operations need to be
completed on the data. It is also a conceptual representation of data objects,
the associations between different data objects and the rules. The primary goal
of using data models are the following:

page 8 2.5 Systems Development

2.5.13.3 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
36192036 Any line marked with a #

is for Official Use Only

a. Ensure that all data objects required by the database are correctly repre-
sented

b. Data model structures must define the relational tables, primary and
foreign keys, and stored procedures

c. Data models must depict the base data which is used by database devel-
opers to create a physical database

d. Data models must be able to identify missing, and redundant data

(2) Quality and easily understood data models allow cheaper/faster upgrades, and
maintenance for IT infrastructures.

(3) Data models and supporting descriptions are the tools used in database
design. These tools become the deliverables that result from applying
database design. There are two primary objectives for developing of these de-
liverables. The first objective is to produce documentation that describes a
customer’s perspective of data, and the relationships among this data. The
second objective is to produce documentation that describes the customer or-
ganization’s environment, operations, and data needs. In accomplishing these
objectives, the following deliverables will result:

• Decision Analysis and Description Forms
• Task Analysis and Description Forms
• Task/Data Element Usage Matrix
• Data Models
• Entity-Attribute Lists
• Data Definition Lists
• Physical Database Specifications Document

(4) The Data model classes and attributes must be displayed at an adequate level
of detail to ensure they are understood. The tables below display the Engineer-
ing Data Dictionary (EDD) mandatory metadata:

a. Each attribute name must end with an approved generic element/class
word.

b. Any existing attribute that does not have one of the approved generic
elements/class words at the end of its name must be renamed and
redefined, see table IRM # 2.5.13.3 #

Database Design Techniques and Deliverables 2.5.13 page 9

#
#
#
###
#
#
#
#

#####
#
#
#

#
#
#
#
#
###

#
#
#
#

#

#
#
#
#
#

##
#
#
#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.3
Any line marked with a #
is for Official Use Only

page 10 2.5 Systems Development

#
###
#
#
#
#

#
#
#
#
#
##
#

###
##
##

#
#
#
#
###

#

#
#
#
#
#
#
#

##

#
#
#
#
#
#
#
#
#
#
#
#

##
#
#
#
#
#

##

#
#
#
#

#

#
#
#
#
#
#

##

#
#
#
#

#####
#
#
#
#

####
#
#
#
#
#

2.5.13.3 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

(5) Consider a database approach if one or more of the following conditions exist
in the user environment:

• A multiple number of applications are to be supported by the system
• A multiple number of processes or activities use a multiple number of

data sources
• A multiple number of data sources are used in the reports produced
• The data, from the data definitions, are known to be in existing

database(s)
• The development effort is to enhance the capabilities of an existing

database

(6) A thorough analysis of the current environment must be concluded to clarify
any alternatives that may be preferable to DBMS implementation.

(7) As soon as database development is approved by leadership, then undertake
the activities of logical database analysis and design. After the logical schema

Database Design Techniques and Deliverables 2.5.13 page 11

#
#
#
#
###
#
#
#

#

#
#
#
#
#
#
#
#
#

##
#
#
#

#
#

#
#
#
#
##

#
#
#
#
#

#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#
#
#

#

#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.3
Any line marked with a #
is for Official Use Only

and sub-schemas are completed they are translated into their physical counter-
parts. Then the physical sub-schemas are supplied as part of the data
specifications for program design.

(8) The logical design encompasses a DBMS-independent view of data, and that
physical design results in a specification for the database structure, as it is to
be physically stored.

(9) Implementation Design: Is the design step between the logical and physical
design that produces a schema, and processed a DBMS.

(10) Do not limit database development considerations to providing random access,
or ad hoc query capabilities for the system.

2.5.13.4
(09-27-2022)
Database Design
Overview

(1) A database design is the organization of data according to the database
model. The designer determines what data must be stored, and how the data
elements interrelate. The Database Life Cycle (DBLC) defines the five stages
for creating a database as the following:

a. Requirements analysis
b. Logical Design
c. Physical Design
d. Implementation
e. Monitoring
f. Modifications/Redesign
g. Maintenance

(2) Logical database design is the process of determining how to arrange the attri-
butes of the entities in a business environment into database structures such
as tables of a relational database.

(3) To develop a logical database, analyze the business needs of the organization
that the database would support, how the operations relate to each other, and
what data is required in business operations. After this analysis, model the
data.

(4) Modeling involves studying data usage, and grouping data elements into
logical units so that a task supported by one or more organizational units is
independent of support provided for other tasks. Exhibit 2.5.13-9 provides the
terms, and descriptions for logical database design.

(5) Providing each task with its own data groups allow changes in data require-
ments of one task to be minimally impacted on data provided for another task.
When data is managed as a synthesis, data redundancy is minimized, and
data consistency among tasks and activities is improved. Figure 2.5.13-1
graphically expresses this point.

page 12 2.5 Systems Development

2.5.13.4 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Figure 2.5.13-2

(6) Logical database design comprises two methods to derive a logical database
design. The first method is used to analyze the business performed by an or-
ganization. Following this analysis, the second method is used to model the
data that supports the business. These methods are:

a. Business Analysis
b. Data Modeling

(7) For IRS Enterprise Life Cycle (ELC) Data Model Compliance Standards, see
Exhibit 2.5.13-12.

2.5.13.4.1
(09-27-2022)
Types of Database
Models

(1) There are five standard types of database models:

• Hierarchical: Data is organized into a tree-line-structure, where the
hierarchy starts from the Root data, and expands like a tree, adding
parent to child nodes.

• Network: This database model is used to map many -to-many data re-
lationships, and becomes more connected as more relationships are
created. This is an extension of the Hierarchical model, and was the
most popular before the Relational Model was implemented

• Relational: Data is organized into two-dimensional tables, and the con-
nection is maintained through a common field. The structure of data in
the relational model is tables. The tables are also known as relations in
Relational Model.

• Entity-Relationship: Entity-Relationships are created by dividing the
object into entities, and its features into attributes. E-R Models are
sketched to represent the relationships as image forms for easier com-
prehension, and are used during design.

• Object-Oriented Database (OODB): A combination of an Object-
Oriented database model and a Relational database model that
supports objects, classes, inheritance etc. The goal of this model is to
close the gap between relational databases, and the Object-Oriented
practices used in many programming languages, e.g., C++, C#, and
Java. Databases that represent data in the form of objects and classes.
Object-Oriented databases have the same principles of Object-Oriented
Programming (OOP) which is the combination model features of (con-
currency, transaction, and recovery).

Database Design Techniques and Deliverables 2.5.13 page 13

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.1
36192001Any line marked with a #

is for Official Use Only

• zObject-Oriented Database Model (OODBM): Similar principles to an
Object-Oriented programming language. An Object-Oriented database
management system is a hybrid application that uses a mixture of
Object-Oriented and Relational Database platform to process data. See
Figure 2.5.13-3

Object-Oriented Database Model (OODBM)

Example of OODBM

Object-Oriented Programming + Relational Database Features = Object Oriented Database Model

Figure 2.5.13-3

page 14 2.5 Systems Development

2.5.13.4.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Figure 2.5.13-4 An example of Object-Oriented Database Model

2.5.13.4.2
(09-27-2022)
Business Analysis Best
Practices

(1) Business Analysis - Business analysis enables an enterprise to articulate the
needs, justification for change, and to design and describe solutions that
deliver value. Business Analysis is also a method for analyzing, and under-
standing a customer’s enterprise business needs. The Business Analyst
recommends relevant solutions by defining, documenting, and managing re-
quirements while working with stakeholders to establish the requirements. In
applying this method, the objectives are to:

Database Design Techniques and Deliverables 2.5.13 page 15

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.2
36192038Any line marked with a #

is for Official Use Only

• Must have obtain a clear understanding of an organization’s objectives,
and how it performs its mission

• Identify specific requirements that must be reflected in the database that
involves decision analysis and task analysis

• Allow the analyst to focus on the information requirements, and how
they are related after identifying each decision and task

• Gain an understanding of the requirements, not as a critique of the op-
erations

• Identify stated data needs, and various indicators such as: organiza-
tional structure, environmental policies, interaction between functions,
etc., which may indicate additional data requirements

• Define the scope of the database, and the environment that the
database will support

• Identify any constraints for the database operation
• Define the Acceptance Criteria for projects and user stories
• Produce documentation that presents a valid picture of the organiza-

tion’s operation

(2) Analyze Documentation - Prior to applying this method, acquire and study
the following documentation:

• A high-level data flow diagram (DFD) depicting the major applications to
be supported, and the major data sources and outputs of these applica-
tions.

• Detailed DFDs depict the functions, tasks performed, and a list of the
documents, files, and informal references (e.g., memos, verbal commu-
nications, etc.) used to perform each function.

(3) Business Analysis eight (8) steps:

a. Create a Business Case as follows:
• Identify and validate the mission, core values, functions, and operations
• Identify the scope and primary business/project objectives
• Use business analysis techniques such as Strength, Weakness, Oppor-
tunities, and Threats (SWOT) analysis
• Identify tasks performed and data usage in the current and target envi-
ronment
• Identify all task/data relationships
• Develop a thorough list of constraints
• Create a cost-benefit analysis and/or Activity-Based Costing

b. Create a Stakeholder register as follows:
• Obtain valid information about the stakeholders
• Identify who makes project decisions, and signs-off project documenta-
tion
• Identify who are the product owners for the Enterprise Life Cycle
phases.
• Identify where the stakeholder works, and who they report to in the
agency
• Identify the stakeholder(s)’ role in the project, and their level of
influence

c. Create a Business Analysis Plan as follows:
• Define the resources and tasks associated with the requirements
• Use business analysis tools such as a RACI matrix, this is a table that
displays who are the responsible, accountable, consulted, and informed
stakeholders

page 16 2.5 Systems Development

2.5.13.4.2 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

d. Elaborate on business objectives that were defined in the business
case, and create the requirements as follows:
• Perform an assessment of the business objectives, and current
business process creating the as-is (current state), and to-be (target
state)
• Focus information on the elements: infrastructure (technology),
process, business related data, impacted business domain(s), goals, and
measures

e. Identify options that are the best solutions for project objectives:
• Assist the development team with providing more information about
similar situations in the agency with other developers, and their practices,
as documented in i.e., (lessons learned or playbooks)
• Use business analysis tools, e.g., Work Breakdown Structure (WBS),
Technology Capability assessment, and business or IT staff interviews
• Use other tools such as Cause and Effect analysis

g. Expand on product requirements:
• Once the high-level scope of the product has been defined, the person
performing the Business Analyst functions must focus on the detailed
product requirements before actual development begins
• Use business analysis techniques such as use cases, story boards,
prototypes, and/or wireframes
• Document both functional and nonfunctional requirements

h. Support the Project Manager and/or Scrum Master and development
team:
• Support the programmers by constantly reviewing their deliverables to
ensure they are in-line with objectives in the business case
• Facilitate interviews with the Project Manager or Scrum Master, and
based on their feedback and project team, facilitate and/or update re-
quirements documentation
• As needed, engage with quality control analysts (DMQA) to ensure that
requirements are properly tested

(4) Gap Analysis - Perform this analysis by comparing the identified current state
with the desired outcomes to assess if there are any business process gaps
that prevents the customer and stakeholders from achieving their business
needs.

Database Design Techniques and Deliverables 2.5.13 page 17

#
#
#
#
#
#
#
#
#
#

#
#
#
#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.2
Any line marked with a #
is for Official Use Only

2.5.13.4.2.1
(09-27-2022)
Database Design -
Mission, Functions and
Operations

(1) Identify the mission, functions and operations of the organizational element
that the database is to support. The purpose of this step is to define the scope
of the potential database’s current and future needs, and develop a reference
point for further analysis. This step covers all relevant functional areas and be
developed separately from any single application design effort.

(2) In examining an organizational element, which may range in size from a
branch to an entire organization, the following may provide sources of informa-
tion:

• Business Impact Analysis (BIA):This is the organization’s BIA best
source of information. This plan may vary widely in content, but must
articulate the organization’s current and future state, a discussion of
each system’s scope, and definitions of the dependencies between
major systems (both automated and manual) and groups of data. With
this information, it is possible to determine which functional areas must
be included within the scope of the new design.

• Scope Responsibility: If the BIA is not available, or does exist, but
does not contain diagrams of systems and data dependencies, use it to
determine the scope. In this case, persons within the relevant functional
areas must be interviewed to determine how they relate to the rest of
the organization.

• Interviews: Additional interviews can be conducted for newly identified
areas to ascertain the extent to which they share data with the applica-
tion(s) under design.

• Requests for Information Services (RIS): Potential sources of infor-
mation for the , mission, functional statements, internal revenue
manuals, and senior staff interviews.

• Future State: Future changes to the organization must be considered
when defining the scope of the design effort, i.e., any major changes in
operating policy, regulations, etc. Each potential change must be identi-
fied, and further defined to determine whether it could change the
definition, usage, or relationships of the data. Where a change could
affect the database in the future, the design scope must be expanded to
consider the effects of this change.

(3) Construct a high-level DFD to graphically depict the boundaries after determin-
ing the scope of the database.

2.5.13.4.2.2
(09-27-2022)
Identify Tasks Performed
and Data Usage

(1) Identify the tasks performed in each of the functions and operations. The
purpose is to identify tasks performed in each function of the organizational
element that the database would support and to identify the data usage or
″data needs″ of these tasks. The functions and their related tasks can be
divided into two categories: operational and control/planning.

(2) Decompose each function into the lowest levels of work that require, on a re-
petitive basis, unique sets of data. Work at this level is considered a ″task″, a
unique unit of work consisting of a set of steps performed in sequence. All
these steps are directed toward a common goal and use and/or create a
common set of data.

(3) Once a task has been defined, decompose it into subtasks. This decomposi-
tion must occur if one or more of the following conditions exist:

page 18 2.5 Systems Development

2.5.13.4.2.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

• Separation-Of-Duty: This is more than one person is needed to carry
out the task, and each of them is required to have a different skill and/or
carries out his/her part independently.

• Levels of Authorization: The following are different levels of authoriza-
tion:

• Different people authorize different parts of the task
• Different frequencies or durations apply to different parts of the task
• Input documents are not used uniformly within the task
• Totally different documents are used for different parts of the task
• Many different operations are carried out within the task
• Different primitive operations which each have separate input/output re-

quirements

(4) When a sub-task has been defined, ensure it is limited to that task, and does
not span two or more tasks, or it cannot be considered a subtask.

(5) Collect all information in a precise manner using interviews and documentation
techniques. This approach is important when identifying operational functions
because they provide the basic input to the database design process. These
functions, and their associated tasks must be identified first. Therefore, begin
by identifying the organizational areas within the scope of the design effort
which perform the functions essential to conducting business. Once these
functional areas have been determined, the persons to be interviewed can be
specified. The recommended steps are as follows:

1. Determine the key individuals within these areas, and send out question-
naires requesting job titles of persons within their areas of responsibility;
functions performed in each job; and a brief statement of the objective(s)
of each job.

2. Develop a document showing job title, functions performed, and the ob-
jectives of these functions after receiving the results of the questionnaire.

3. Review and classify each job as either operational or control and
planning.

4. Contact the supervisor of each job which is identified as ″operational″
and ask to select one, preferably two, persons performing that job who
can be interviewed.

5. Conduct the operational interviews. Keep the following three objectives in
mind: identify each operational function; identify the data associated with
each of these functions; and identify the implicit and explicit rules deter-
mining when and how each function occurs.

(6) When conducting operational interviews, accomplish the following steps during
the interviews:

1. Begin by having each interviewee describe, in detail, the functions and
tasks that are performed on a daily or potentially daily basis. Document
these major actions, decisions, and interfaces on task analysis and
decision analysis forms. See Exhibits 2.5.13-1 and 2.5.13-2. These
actions, decisions, and interfaces must also be reflected on a detailed
data flow diagram. This documentation can subsequently be used to
verify that all operational functions and their sequence are correct.
Repeat this same procedure for functions that occur weekly, monthly,
quarterly, and annually.

2. As the functions, tasks, and other activities are defined, determine the
documents, files and informal references (memos, verbal communica-
tions, etc.) used to perform them and indicate these in a separate

Database Design Techniques and Deliverables 2.5.13 page 19

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.2.2
Any line marked with a #
is for Official Use Only

numbered list. A task/document usage matrix may also be used specify-
ing a task’s inputs and outputs in terms of documents.

3. Once the person interviewed agrees to the contents of the documenta-
tion, discuss more specifically each action, decision, and interface point
to determine what specific documents or references are required. Then
request a copy of each document that has been discussed.

4. Finally, identify the data elements used or created on each document,
and compile a list of these elements including their definitions and
lengths. See Exhibit 2.5.13-6 any data elements that are not included in
the dictionary must be entered.

(7) The second type of information required for conceptual database development
involves the organization’s control and planning functions and their related data
needs. An in-depth investigation of the organization’s explicit and implicit
operating policies is necessary. Such information can be obtained through in-
terviews with management. Since the nature of the information collected will
vary according to the organization and persons involved, there is no rigid
format in which the interview must be documented. However, in order to
minimize the possibility of losing or missing information, it is recommended that
there be two interviewers who could alternate posing questions and taking
notes.

(8) Conduct interviews for control and planning functions with persons whose re-
sponsibilities include defining the goals and objectives of the organization,
formulating strategies to achieve these goals, and managing plans to
implement these strategies; and with those persons directly responsible for the
performance of one or more operating areas. The objective of these interviews
is to gain, where appropriate, an overall understanding of:

• The basic components of the organization, and how they interact with
one another

• The external environment that affects the organization directly or indi-
rectly (i.e., Congressional directives, Treasury policies, etc.)

• Explicit or implicit operating policies that determine how the mission is
performed; some of these may be identified when discussing the
internal and external environment

• Information used currently, or required to plan organizational activities,
and measure and control performance

• Obtain examples if available of any action items
• Changes that are forecast that may affect the organization

(9) The following are steps for conducting control and planning interviews:

1. Present the designer’s perception of functions and operations and seek
confirmation and clarification, i.e., clarify which are main functions,
support functions, and sub-functions or tasks.

2. Ask what additional functions, if any, are performed.
3. Ask what monitoring functions are performed and what critical indicators

are used to trigger intervention.
4. Ask what planning functions are performed and what data is used for

planning purposes.
5. Express appreciation by thanking the person interviewed for his/her time.
6. If any new data elements are defined during the interviews, ensure they

are incorporated in the Enterprise Data Dictionary (EDD) so that they
may be properly cross-referenced.

page 20 2.5 Systems Development

2.5.13.4.2.2 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

2.5.13.4.2.3
(09-27-2022)
Identify Task/Data
Relationships

(1) The process of defining task/data relationships begins with analyzing the docu-
mentation developed during the interviews. A task/data relationship is defined
as the unique relationship created between data items when they are used to
perform a specific task. The process includes the following:

a. Collect information about data usage, and identify task/data relationships.
b. Identify functions and tasks as either operational, control, and/or

planning, and their data usage, for the task/data relationships. It is critical
that these relationships be carefully and thoughtfully defined.

(2) Identify a series of unique tasks, and the following rules must be applied:

a. A task must be performed within one functional area.
b. Each task must consist of a set of serially performed steps (or serially

positioned symbols on a DFD).
c. If a decision point occurs, and one path of the decision involves a new

action in effect, then the current task ends and a new one begins.
d. Each step within a single task must be performed within a period as

stated during interviews with customers. If a significant amount of time
can elapse between two steps, more than one task must be defined.

e. Each step within the task must use the same set of data. However, if
new data is created in one step of the task and used in the next step,
they may be considered as the same set of data.

f. After all the data flows, and other documentation have been analyzed and
assigned to tasks, compare the tasks for each duplicate interview to
determine if the same ones were defined - This is assuming that two
persons with the same job title were interviewed in each relevant area.
When conflicts are found, compare the two sets of documentation to
determine if one is more detailed

g. If the DFDs, etc., appear to be the same and differ only on levels of
detail, choose the one that best defines a complete unit of work.

h. If real functional differences are found, review the documents (and notes)
associated with each. Sometimes people with similar titles perform
different functions due to their seniority, or competence. When major dif-
ferences are found, separate any unique tasks and add them to the list.

i. If differences are found and it is difficult to determine why they exist,
request that the appropriate supervisor review the task definitions
developed during the interviews. (However, do not include any portions of
the interviews that are confidential).

j. Once any conflicting definitions have been resolved, task/data relationships
specifically documented. Because it is likely that redundant tasks have
been defined, arrange the documentation already produced by department
or area. This method increases the likelihood that redundant tasks will be
identified. It is suggested that the documentation of task/data element rela-
tionships begin with a table such as the one shown in Figure 2.5.13-2. The
documentation must:
• Numerically identify each task
• Briefly define each task by a verb-object type command (e.g., fill out error
report, request alternate items, etc.)
• Classify tasks as operational or control/planning Identify the frequency
and average volume for each task
• Relate each task to a specific functional area
• Construct a task/data element matrix to specify each task’s inputs and
outputs in terms of data elements

Database Design Techniques and Deliverables 2.5.13 page 21

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.2.3
Any line marked with a #
is for Official Use Only

Task/Data Element Relationships

Task # Task Definition Type Frequency Average
Volume

Department
Data Elements

1
Examine order
request

Opera-
tional

Daily
500

Order Entry 410, 200, 201 -
225

...

...

Figure 2.5.13-5 This is a depiction of a Task/Data Relationships

2.5.13.4.2.4
(09-27-2022)
Develop a List of
Constraints

(1) Constraints are a very important feature in a relational model based on attri-
butes or tables. Constraints are the rules associated with a database schema
that can be implicit (implied), or explicit (fully understood), and is used for opti-
mization purposes. The purpose of developing a list of all implicit and explicit
constraints is to provide information for the physical database designer to use
in determining operational considerations, e.g., access restrictions, interfaces
to other packages, and recovery capabilities. Constraints provide a mechanism
for ensuring the data conforms to guidelines specified by the Database Admin-
istrator (DBA), and force the Database Management System DBMS to check
that data meets the semantics.

(2) Develop a list of all implicit and explicit constraints such as:

a. Security Constraints: Rules where security levels are assigned to data.
They can be used as integrity rules, derivation rules, or as schema rules
(data dependencies).

b. Enterprise Constraints (Semantic Constraint): An enterprise constraint
are additional rules specified by users or database administrators, and
can be based on multiple tables. For example:
• One class can have a maximum of 30 students
• One instructor can guide a maximum of four classes per semester
• An employee cannot take part in more than five projects

c. Data Integrity: Overall accuracy, completeness, and consistency of data
which refers to data safety in regard to regulatory compliance and
security. The major importance of data integrity is protection against data
loss or a data leak. In order to keep data safe from outside forces with
malicious intent, you must ensure that internal users are handling data
correctly. By implementing the appropriate data validation and error
checking sensitive data is never miscategorized or stored incorrectly.

d. Domain Integrity: A set of acceptable values that a column is allowed to
contain. This can include constraints and other measures that limit the
format, type, and amount of data entered for processes that ensure the
accuracy of each piece of data.

e. Referential Integrity: Referential Integrity requires that a foreign key
must have a matching primary key, or it must be null. This constraint is
specified between two tables (parent and child), and maintains corre-
spondence between rows in these tables. See examples of referential
integrity constraint in the Organization/Employee table below:

page 22 2.5 Systems Development

2.5.13.4.2.4 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Referential Integrity Constraint

Referential Integrity Constraint

Organization(OrgID, OrgName)
Employee(EmpID, OrgID, EmpDate)

f. Response
g. Cyclic processing time requirements

(3) Document constraints using either a tabular, or a memo format. Examples of
items to be considered are:

• Access and processing cycle time requirements
• Data security needs
• Special display or calculation requirements
• Special equipment utilization

2.5.13.4.2.5
(09-27-2022)
Develop a List of
Potential Future
Changes

(1) Develop a list of potential future changes, and the way in which they may
affect operations. The purpose of this step is to include in the database design
considerations that may affect operations in the future. Consider future
changes to include anything that may affect the scope of the organization,
present operating policies, or the relationship of the organization to the
external environment. When reviewing the interviews to identify changes,
highlight anything that implies change, and the effect(s) of that change.

(2) For more information, see steps for Business Analysis in subsection IRM
2.5.13.4.2.

2.5.13.4.3
(09-27-2022)
Data Modeling Design

(1) Data modeling is a technique that involves the analysis of data usage and the
modeling the relationships among entities. These relationships are modeled
independent of any hardware or software system. The objective of logical
design depicts user perspectives of data relationships and information needs.

(2) All IRS modernizations systems’ conceptual, logical, and physical data models
must be represented using the object model notation of the Unified Modeling
Language (UML).

(3) The various approaches to logical database design involve two major design
methodologies-entity analysis and attributes .

(4) The primary tool used is the data relationship diagram. This type of diagram is
used to facilitate agreement between the designer, and users on the specific
data relationships and convey those relationships to the physical database
designer. It is a graphic representation of data relationships. The format used
must be either the data structure diagram or entity-relationship diagram. See
Exhibits 2.5.13-4 and 2.5.13-5.

(5) Simplify the modeling process by partitioning the model into the following four
design perspectives:

• Organizational Perspective: Reflects senior and middle management’s
view of the organization’s information requirements, and how the organi-
zation operates.

• Application Perspective: Represents the processing that must be
performed to meet organizational goals, i.e., reports, updates, etc.

Database Design Techniques and Deliverables 2.5.13 page 23

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.3
Any line marked with a #
is for Official Use Only

• Information Perspective: Depicts the generic information relationships
necessary to support decision-making, and long-term information re-
quirements. It is represented by user ad hoc queries, long-range
information plans, and general management requirements.

• Event Perspective: Pertains to time and scheduling requirements. It
represents when things happen, e.g., frequency of reports.

(6) There are two general rules that provide the foundation for design perspec-
tives:

• The design perspectives are modeled by three types of constructs:
✓ Entities: Number of tables needed for database
✓ Attributes: Facts necessary to describe each table
✓ Relationships: How are the tables linked together

• In the design perspective, each component of information must be rep-
resented by only one of these constructs

(7) An entity refers to an object about which information is collected, e.g., a
person, place, thing, or event. A relationship is an association between the oc-
currences of two or more entities. An attribute is a property of an entity, that is,
characteristic about the entity, e.g., size, color, name, age, etc.

(8) Data usage is dynamic, and involves not only values, but relationships. Data
must be divided into logical groups before being molded into whatever struc-
tures are appropriate, entity relationship diagrams, data structure diagrams,
etc. After the completion of logical modeling the designer can determine if the
database approach is practical , if not take an alternative path as soon as
possible to save vital resources.

(9) Data modeling involves the following steps:

1. Identify local views of the data
2. Formulate entities/Entity Modeling
3. Specify relationships
4. Add descriptive attributes
5. Consolidate local views and design perspectives
6. Verify the data model

2.5.13.4.3.1
(09-27-2022)
Identify Local Views of
the Data

(1) Develop local views of data for the following:

• Organization
• Application
• Information
• Event Design-Perspectives

(2) For each of the functions, activities, and tasks identified, there is a ″sub-
perspective″ or local view of the data. Normally there will be several local
views of the data depending on the perspective. These views correspond to
self-contained areas of data that are related to functional areas. The selection
of a local view will depend on the perspective, and the size of the functional
area. Factors which must be considered in formulating local views include a
manageable scope, and minimum dependence, or interaction with, other views.

(3) The primary vehicles for determining local views are: the task/data element
matrices, and the task analysis and description forms constructed during
logical database analysis. See Exhibits 2.5.13-2 and 2.5.13-3.

page 24 2.5 Systems Development

2.5.13.4.3.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

2.5.13.4.3.2
(09-27-2022)
Formulate Entities/Entity
Modeling

(1) Entity modeling is a technique used to describe data in terms of entities, attri-
butes, and relationships. For each local view, formulate the entities that are
required to capture the necessary information about that view.

(2) At this point the designer is confronted with two major considerations as
follows:

a. The existence of multiple entity instances must be addressed by using
the concept of ″type″ or ″role″. For example, the population of the entity
EMPLOYEE can be categorized into employees of ″type″: computer
systems analyst, secretary, auditor, etc. The generalization of these types
into the generic entity EMPLOYEE will be considered in the next stage of
conceptual design where user views are consolidated.

b. Use of the entity construct - Information can be modeled as either an
“entity”, “attribute”, or “relationship”. See Figure 2.5.13-6 example of how
the designer must be guided by rules

Design Process Rules

Design Process: the designer must be guided
by rules

Rules Examples

1) Two employees are married can be modeled
using the entity MARRIAGE

First - Use the construct that seems most natural

2) The relationship IS-MARRIED-TO, or the
attribute CURRENT-SPOUSE

Second - Avoid redundancy in the use of modeling
constructs; use only one construct to model a piece
of information.

Figure 2.5.13-6 This a depiction of examples for Design Process Rules

c. If this method later proves to be wrong, it must be factored out in subse-
quent design steps.

(3) The second consideration deals with the use of the entity construct itself. See
Figure 2.5.13-6 “Design Process Rules” as an example.

(4) One rule of thumb, ″magic number seven, plus or minus two″, this technique
has been successfully used to restrict the number of entities identified so that
a local view can be properly represented. This states that the number of facts
(information clusters) that a person can manage at one time is about seven
plus, or minus two. When this is applied to the database design process, the
maximum number of entities contained in a local view must not be more than
nine, but closer to six or seven. If this restriction cannot be met, the scope of
the local view is too large.

(5) Selection and assignment of an “entity name”: The entity name is important
when views are consolidated because that next stage deals with homonyms
and synonyms. If the name given to an entity does not clearly distinguish that
entity, the integration and consolidation process will carry this distortion even
further.

(6) For more, guidance on naming data elements see, IRM 2.152.3 Data Engi-
neering, Naming Data Elements(s)/Object(s).

(7) Identify attributes for each entity: A collection of attributes may be used as the
basis for formulating entities. The significant attribute is the identifier (or
primary key) that uniquely distinguishes the individual entity instances (occur-

Database Design Techniques and Deliverables 2.5.13 page 25

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.3.2
Any line marked with a #
is for Official Use Only

rences),e.g., employee number. This entity identifier is composed of one or
more attributes whose value set is unique. This is also important later in the
consolidation phase because the identifying attribute values are in a one-to-
one correspondence with the entity instances. Therefore, two entities with the
same identifiers could be redundant. However, this will depend on their de-
scriptive attributes, and the degree of generalization.

2.5.13.4.3.3
(09-27-2022)
Specify Relationships

(1) Identify relationships between the entities. In this step, additional information is
added to the local view by forming associations among the entity instances.
There are several types of relationships that can exist between entities. These
include:

• Optional relationships
• Mandatory relationships
• Exclusive relationships
• Contingent relationships
• Conditional relationships

(2) In an optional relationship the existence of either entity in the relationship is
not dependent on that relationship. For example, there are two entities,
OFFICE and EMPLOYEE. Although an office may be occupied by an
employee, they can exist independently.

Figure 2.5.13-7

(3) In a mandatory relationship, the existence of both entities is dependent on that
relationship.

Figure 2.5.13-8

(4) An exclusive relationship is a relationship of three entities where one is consid-
ered the prime entity that can be related to either one of the other entities, but
not both.

page 26 2.5 Systems Development

2.5.13.4.3.3 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
36192003, 36192004 Any line marked with a #

is for Official Use Only

Figure 2.5.13-9

(5) In a contingent relationship the existence of one of the entities in the relation-
ship is dependent on that relationship. A VEHICLE is made from many PARTS.

Figure 2.5.13-10

(6) A conditional relationship is a special case of the contingent relationship. When
it occurs, the arrow must be labeled with the condition of existence.

Figure 2.5.13-11

Database Design Techniques and Deliverables 2.5.13 page 27

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.3.3
36192005, 36192006, 36192007Any line marked with a #

is for Official Use Only

(7) Relationships can exist in several forms. The associations can be one-to-one
(1:1), one-to-many, or many-to-many (N:N), the descriptions are the following:

a. One-to-One association: Depicted as a single-headed arrow, and
indicates that the relationship involves only one logical record, entity or
entity class of each type.

b. One-to-Many association: Depicted as a double-headed arrow, and
documents the fact that a single entity, entity class or logical record of
one type can be related to more than one of another type.

c. Many-to-Many association: Depicted as a double-headed arrow in both
directions.

(8) When forming relationships do as follows:

a. Use an informal procedure for identifying relationships by pairing each
entity in the local view with all other entities contained in that view.

b. For each pair, ask if a meaningful question can be proposed involving
both entities, or if both entities may be used in the same transaction. If
the answer is “yes ”to either question determine the type of relationship
that is needed to form the association.

c. Determine which relationships are most significant and which are
redundant. This can be done only with a detailed understanding of the
design perspective under consideration.

2.5.13.4.3.4
(09-27-2022)
Add Descriptive
Attributes

(1) Add descriptive attributes; attributes can be divided into two classes:

a. Classes that identify entity instances: Included when the entities were
formulated.

b. Classes that provide the descriptive properties of entities: Examples
of descriptive attributes are: color, size, location, date, name, and
amount.

(2) In this step of local view modeling, the descriptive attributes are added to the
previously defined entities. Only single-valued attributes are allowed for the
description of an entity.

2.5.13.4.3.5
(09-27-2022)
Consolidate Local Views
and Design Perspectives

(1) Consolidate Local Views and Design perspectives: Consolidation of the
local views into a single information’ structure is the major effort in the logical
database design. It is here that the separate views and applications are unified
into a potential database. Three underlying concepts that form the basis for
consolidating design perspectives; these concepts are:

a. Identity: Identity is a concept which refers to synonymous elements
when two or more elements are identical, or have an identity relationship,
if they are synonyms. Although the identity concept is simple, the deter-
mination of synonyms is not. Pertaining to inadequate data
representation methods, the knowledge of data semantics is limited.
Typically, an in-depth understanding of the user environments is required
to determine if synonyms exist. Determining whether similar definitions
may be resolved to identical definitions, or if one of the other element
relationships really applies, requires a clear and detailed understanding
of user functions and data needs.

b. Aggregation: Aggregation is a concept in which a relation between
elements is considered to become another higher-level element. For
example, “EMPLOYEE” may be thought of as an aggregation of “NAME”,

page 28 2.5 Systems Development

2.5.13.4.3.4 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

“SSN”, and “ADDRESS”. Many aggregations are easy to identify since
the major data models incorporate syntax that can represent aggrega-
tions.

c. Generalization: Generalization is a concept in which a group of similar
elements is thought of as a single generic element by suppressing the
differences between them. For example, the entity ″EMPLOYEE″ may be
thought of as a generalization of ″FACTORY-WORKER″, ″OFFICE-
WORKER″, and ″EXECUTIVE″. An instance of any of these three types
is also an instance of the generalized ″EMPLOYEE″. Care must be taken
not to confuse it with aggregation. An analogy for aggregation is parts
making up a ″whole″, and generalization is the ″whole″.

(2) Since aggregation and generalization are similar in structure and application,
one element may participate in both aggregation and generalization relation-
ships.

(3) Inferences can be drawn about the aggregation dimension from the generaliza-
tion dimension, and vice versa, e.g., it can be inferred that each instance of
″EXECUTIVE″ is also an aggregation of Name, SSN, and Address. See Figure
2.5.13-8.

Figure 2.5.13-12 Aggregation Dimension from the Generalization Dimension

(4) There are three consolidation types; these types may be combined in various
ways to construct any type of relationship between objects (elements) in
different user views. By combining consolidation types, powerful and complex
relationships can be represented. Most semantic relationships are represented
by some combination, and are listed as the following:

a. Identity Consolidation: Two objects may be semantically identical with
the additional option of having identical names. Homonyms must be
guarded against as well as similar, but not identical objects. Similarity is
best expressed using aggregation and generalization as a check on the
consistency of the consolidation, and user views. If an object from User
view is found to be identical to an object from User second view, neither
of these objects can participate further in any other identity consolidations
between these two views. This is true because each object is assumed
to be unique within the context of its own local user view.

b. Aggregation Consolidation: This may occur in two forms; the difference
depends on whether one of the users has specified the aggregated
″whole″ object. An example of the simpler form is where User 1 has
specified a number of objects without making any consolidation type rela-

Database Design Techniques and Deliverables 2.5.13 page 29

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.3.5
36192008Any line marked with a #

is for Official Use Only

tionships between them, e.g., an inventory view of “HANDLEBARS”,
“WHEELS”, “SEATS”, and “FRAMES”. However, User 2 has specified an
object, “BICYCLE”, which is an aggregation of User is objects. The con-
ceptually more difficult version of aggregation occurs when both users
have specified some or all of the parts of an unmentioned ″whole″. As an
example, when separate inventory functions are maintained for basic,
non-variable parts (FRAMES, WHEELS) and for parts that may be substi-
tuted by customer request (SEATS, HANDLEBARS). This type of
aggregation is more difficult to recognize since neither user has defined a
BICYCLE object.

c. Generalization Consolidation: This may also occur in two forms; the
difference lies in whether either of the users has specified the general-
ized or generic object.

(5) The consolidation process comprises four steps:

a. Select Perspectives: First, confirm the sequence of consolidation by
following the order of design perspectives. Since this order is general,
check it against the objectives of the database being designed. For
example, if you are designing a database for a process-oriented organi-
zation, you might consider the key perspectives to be the application and
event perspectives and therefore begin the process with these.

b. Order Local Views within each Perspective: Once the design perspec-
tives have been ordered, focus the consolidation process on local views
within each perspective. Several views comprise the perspective chosen,
and this second step orders these views for the consolidation process.
The order must correspond to each local view’s importance with respect
to specific design objectives for the database.

c. Consolidate Local Views within each Perspective: This step is the
heart of the consolidation process. For simplicity and convenience, use
binary consolidation, i.e., integrating only two user views at a time. This
avoids the confusion of trying to consolidate too many views. The order
of consolidation is determined by the previous step where the local views
within a perspective have been placed in order. The process proceeds as
follows:

1. Take the top two views in the perspective being considered, and consoli-
date these using the basic consolidation principles.

2. Using the binary approach, merge the next local view with the previously
consolidated local views. Continue this process until the last view is
merged.

3. After the consolidation process is completed for the first design perspec-
tive.

4. The next design perspective is introduced, and this process continues
until all perspectives are integrated.

(6) Resolve Conflicts: Conflicts can arise in the consolidation process primarily
because of the number of people involved, and the lack of semantic power in
our modeling constructs. They may also be caused by incomplete or erroneous
specification of requirements. The majority of these conflicts are dealt with in
the consolidation step using the rules previously discussed, any remaining
conflicts that have to be dealt with by designer decisions are taken care of in
this step. When a design decision is made, it is important to ″backtrack″ to the
point in the consolidation process where these constructs were entered into

page 30 2.5 Systems Development

2.5.13.4.3.5 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

the design. At this point the implications of the design decision are considered,
and their effects on the consolidation process.

2.5.13.4.3.6
(09-27-2022)
Present Data Model

(1) The purpose of this step is to present the data model. Use data relationship
diagrams to document local views and their consolidation. These must take the
form of an entity-relationship diagram, or a data structure diagram. See
Exhibits 2.5.13-4 and 2.5.13-5.

(2) Use these rules when constructing either of these diagrams:

• Each entity and relationship must be clearly labeled
• Each entity must be related to at least one other entity
• Show attributes only if they uniquely identify the entity, or are a common

access path to the entity
• Limit entities and relationships for a given activity to a single page
• Identify the name of the activity supported at the top of the page
• If a data relationship diagram for an activity needs to span more than

one page, use the same off-page connectors as used in DFDs

2.5.13.4.3.7
(09-27-2022)
Verify Data Model

(1) Verify the data model. The purpose of this step is to verify the accuracy of the
data model and obtain user concurrence on the proposed database design.

(2) The process of developing the information structure involves summarizing, and
interpreting large amounts of data concerning how different parts of an organi-
zation create and/or use that data.

(3) The design process is highly structured; therefore, take caution to not miss re-
lationships and/or expressed them incorrectly.

(4) The development of the information structure is the only mechanism that
defines explicitly how different parts of an organization use, and manage data.
Anticipate that management, with new knowledge shall require some changes.
Because of this possibility, it is necessary to provide management with an un-
derstanding of the data relationships shown in the information structure, and
how these relationships affect the way in which the organization performs, or
can perform, its mission. Each relationship in the design and each relationship
excluded from the design must be identified and expressed in very clear state-
ments that can be reviewed and approved by management. Following
management’s review, the design will, if necessary, be adjusted to reflect its
decisions.

(5) The verification process is separated into two parts, self-analysis and user
review. In self-analysis, the analyst must insure that:

• All entities have been fully defined for each function and activity identi-
fied

• All entities have at least one relation to another entity
• All attributes have been associated with their respective entities
• All data elements have been defined in the Enterprise Data Dictionary
• All processes in the data flow diagram can be supported by the

database when the respective data inputs and outputs are automated
• All previously identified potential changes have been assessed for their

impact on the database and necessary adjustments to the database
have been determined

Database Design Techniques and Deliverables 2.5.13 page 31

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.4.3.7
Any line marked with a #
is for Official Use Only

(6) To obtain user concurrence on the design of the database, perform the
following steps, in the form of a walk-through, to interpret the information
structure for the user:

a. State what each entity is dependent upon (i.e., if an arrow points to it).
Example: All “ORDERS” must be from “CUSTOMERS” with established
accounts.

b. State what attributes are used to describe each entity.
c. Define the perceived access path for each entity.
d. Define the implications of each arrow (i.e., one-to-one, one-to-many etc.).
e. Define what information cannot exist if an occurrence of an entity is

removed from the database.

(7) Give the user an opportunity to comment on any perceived discrepancies in
the actual operations or usage. If changes need to be made, then give the
user the opportunity to review the full design at the completion of the changes.

(8) After all changes have been updated for both the relationship diagram and the
data definitions, obtain user concurrence on the design specifications.

2.5.13.5
(09-27-2022)
Physical Database
Design

(1) The boundary between logical and physical database design is difficult to
assess because of the lack of standard terminology. However, there seems to
be general agreement that logical design encompasses a DBMS-independent
view of data and that physical design results in a specification for the database
structure, as it will be physically stored. The design step between these two
that produces a schema that can be processed by a DBMS can be called
implementation design. The DBMS-independent schema developed during
logical design is one of the major inputs. Refinements to the database
structure that occur during this design phase are developed from the viewpoint
of satisfying DBMS-dependent constraints as well as the more general con-
straints specified in the user requirements.

(2) The major objective of implementation design is to produce a schema that
satisfies the full range of user requirements and that can be processed by a
DBMS. These extend from integrity and consistency constraints to the ability to
efficiently handle any projected growth in the size and/or complexity of the
database. However, these must be considerable interaction with the application
program design activities that are going on simultaneously with database
design. Analyze high-level program specifications and program design
guidance supplied to correspond to the proposed database structure.

(3) The usefulness of these guidelines is directly related to the where one is in a
development life cycle, and the level of expertise of a developer. This
document assumes the reader is familiar with database concepts and terminol-
ogy since designers will most likely be database administrators or senior
computer specialists.

(4) The criterion for physical design is determined by evaluating requirements e.g.,
operational efficiency, response time, system constraints and security
concerns. This physical design layout must be routinely adjusted to improve
the system operation, while maintaining the user’s logical view of data. The
physical structuring, or design will often be quite different from the user’s per-
ception of how the data is stored.

page 32 2.5 Systems Development

2.5.13.5 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

(5) The following steps provide general guidance for physical database design.
Since much of the effort will depend on the availability of data and resources,
the sequence of these steps is flexible:

a. Determine all user requirements.
b. Determine all relevant processing environments.
c. Select appropriate IRS database management system software.
d. Design the physical placement of data.
e. Perform sizing of data.
f. Use database security controls based on IRM 10.8.21“ Information Tech-

nology (IT) Security, Database Security Policy”.
g. Implement or use the recover procedures based on NIST SP 800-34

“Contingency Planning Guide for Federal Information Systems and policy”
and IRM 10.8.60 “IT Security, IT Service Continuity Management
(ITSCM) Policy”.

(6) See Figure 2.5.13-13 for comparison of logical and physical design:

Logical Design Compared with Physical Design

Logical Design Physical Design

Entity Table

Relationship Foreign Key

Attribute Column

Unique Identifier Primary Key

Figure 2.5.13-13

2.5.13.5.1
(09-27-2022)
Determine the User’s
Requirements

(1) User(s)’ requirements are critical factors that add value to a product, service or
environment. Fulfilling user requirements is a process of engaging users to un-
derstand their problems, process, goals and preferences. The following are
user requirement examples:

• Accessibility: User requirement of 99.99% availability
• Accuracy: Data initiates must be correct
• Capacity: Storage of Big data
• Compatibility: Product or service must be compatible with other

services and/or products
• Convenience: Any element that saves the customer time and effort
• Comfort: Physical design that is easier to understand, or better for

vision, i.e., 508 compliance
• Durability: A design must have stress testing to eliminate breakage
• Efficiency: The processes’ desired outcome for resource constraints
• Features: Preferred methods for serving needs
• Functions: Functional requirements the user needs to perform work,

e.g., a system may be required to calculate and print budgets
• Integrated Services: Automatic availability of diverse multiple devices
• Performance: At a minimum a set of performance requirements must

be documented as follows:

Database Design Techniques and Deliverables 2.5.13 page 33

#
#
#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.5.1
Any line marked with a #
is for Official Use Only

✓ Maximum response time to be experienced for each user-computer
interaction. Response time is measured from the time the user starts
their action until feedback is received from the computer
✓ Throughput required, and the time it will take place, e.g., the require-
ment for one program could be for it to run twice a day at a specific
time
✓ The size and time of maximum-throughput periods
✓ Response time that is minimally acceptable the rest of the time.
Response time degradations can cause users to think the system is
down

• Readability: Users prefer information, and visual data that is concise
and easily understood

• Refinement (Schema): Checking tables for redundancies and
anomalies

• Reliability: Product must perform consistently
• Risk: Requirement to reduce risk’ e.g., being able to roll-back the

database, or obtain a backup
• Trainable: User interfaces must be user-friendly
• Stability: the system environment must be stable, and not susceptible

to crashing
• Visual Appeal: and Users strongly prefer products, services, and envi-

ronments that are aesthetically appealing

(2) Decision making, and the impact of approving user requirements without
having all the facts could have negative consequence; therefore, performing an
analysis is necessary before acting. Figure 2.5.13-14 displays each require-
ment, and an example of an associated result:

Example of User Requirements and Consequences

Requirements Consequences

Retrieval time decreases with a simple
database structure

To meet the logical design requirements, it may be
necessary to implement a more complex multilevel
structure.

Ease of recovery increases with a simple
structure

Data relationships may require more complex mecha-
nisms

Increased pointer or index requirements,
hardware cost is increased if information is
spread over many storage devices

Data clustering and compacting degrade performance

Privacy requirements may require stringent
security, e.g., encryption, or data segmentation

These procedures decrease performance in terms of
update, and retrieval time

Active files, that are accessed in real time, and
need high-speed devices

The result is increased cost

Figure 2.5.13-14

page 34 2.5 Systems Development

2.5.13.5.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

2.5.13.5.2
(09-27-2022)
Determine the
Processing Environment

(1) To determine the primary type of processing, the designer must have a“
framework of physical requirements”. Five environments are discussed;
however, these are only guidelines because for some systems this information
will not be applicable as a set of requirements. These considerations could
conflict with user’s requirements or security needs; therefore, forcing the
designer to make decisions regarding priority.

a. Fast Response Time Environments: This could have multiple run units
actively sharing DBMS facilities, and in order to meet response time
specifications, cost may increase due to the necessity for additional
system resources. Recovery may be critical in such a volatile environ-
ment; whenever possible, use a simple structure.

b. CODASYL (network) Structures: Time specification would translate into
reduced data levels, number of network relationships, number of sets and
size of set occurrences.

c. High-volume Processing Environment Requests: Most frequently
random in nature requiring small amounts of information transfer; thus
affecting page and buffering considerations

d. Low-volume Systems - Generally process more data per request, indi-
cating run units may remain in the system longer because of more
sequential requests and reports, and response time is probably not the
critical issue. Resources may be more limited in this environment,
implying smaller buffers, and perhaps fewer peripherals. With the possi-
bility of fewer resources, those resources may need to be more highly
utilized. On-line recovery techniques may be unavailable since the
resource requirements are costly. Although the number of transactions is
low in this environment, the probability of multiple simultaneous run units
accessing the same data may be high.

e. Batch Environments: When this is indicated, the designer is left with
maximum flexibility since the requirement has reasonable turnaround
time and effective use of resources. Because of job scheduling options,
concurrency problems can be controlled. Recovery is less critical and is
determined by factors such as file volatility, the time necessary to rerun
update programs, and the availability of input data. For example, if the
input data is readily available, the update programs short and processing
85% retrieval; the choice may be made to avoid the overhead of main-
taining an on-line recovery file.

2.5.13.5.3
(09-27-2022)
Select DBMS Software

(1) The DBMS must first physically support the logical design requirement that is,
based on the logical data model, the package must support the required hier-
archical, network or relational structure. Early stages of analysis must provide
enough information to determine this basic structure. From a physical database
design point of view, an analysis must then be made as to how effectively the
DBMS can handle the organizational and environmental considerations. If the
proposed package fails to provide adequate support of the requirements, the
project manager, and supervisor(s) must be notified. The notification must
include the specific point(s) of failure, anticipated impact(s), and any sugges-
tions or alternatives for alleviating the failure(s).

Database Design Techniques and Deliverables 2.5.13 page 35

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.5.3
Any line marked with a #
is for Official Use Only

2.5.13.5.4
(09-27-2022)
Design the Physical
Placement of Data

(1) Designing the placement of data involves selecting the physical storage, and
access methods as well as secondary and multiple key implementation tech-
niques. DBMS packages vary as to the options offered. The use of vendor
documentation, providing specific software handling details, will be necessary
to complete this process. Exhibit 2.3.13-8 provides a summary of access
methods and uses.

2.5.13.5.5
(09-27-2022)
Perform Sizing of Data

(1) Obtain the specifics of sizing from vendor documentation as each DBMS
handles space requirements in a different manner. Consider sizing in conjunc-
tion with designing the placement of data. Once data records, files, and other
DBMS specifics have been sized according to a proposed design, a decision
may be made, because of the space allocation involved, to change the design.
Data compaction techniques may be considered at this point. Flexibility to
make changes and reevaluate trade-offs during this entire procedure is of
critical importance.

(2) For an example, see Exhibit 2.5.13-14

2.5.13.5.6
(09-27-2022)
Consider Security and
Recovery

(1) The DBMS selected must have the options necessary to implement security
and recovery requirements from IRM 10.8.21 IT, Security, Database Security
Policy, and IRM 10.8.32 IBM Mainframe System Security Requirements. Imple-
mentation of these considerations will often cause trade-offs in other design
areas.

2.5.13.6
(09-27-2022)
Deliverables

(1) The deliverables for database design are the following:

a. Decision Analysis and Description Forms
b. Task Analysis and Description Forms
c. Task/Data Element Usage Matrix
d. Data Models
e. Entity-Attribute Lists
f. Data Definition Lists
g. Physical Data Base Specifications Document

2.5.13.6.1
(09-27-2022)
Decision Analysis and
Description Forms

(1) Decision Analysis and Description Forms must identity such items as type of
decision, the decision maker, and the nature of the decision. Exhibit 2.5.13-1
provides guidelines and shows a sample form.

2.5.13.6.2
(09-27-2022)
Task Analysis and
Description Forms

(1) Task Analysis and Description Forms must include the name of the task, its
description (overview), the people/departments involved, and subtasks and
their relationships. Exhibit 2.5.13-2 shows a sample form and provides guide-
lines.

2.5.13.6.3
(09-27-2022)
Task/Data Element
Usage Matrix

(1) A task/data element usage matrix relates each data element to one or more
tasks, see Exhibit 2.5.13-3 for a sample matrix.

page 36 2.5 Systems Development

2.5.13.5.4 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

2.5.13.6.4
(09-27-2022)
Data Models

(1) Data relationship diagrams depict the relationships between entities. These are
tools that provide one way of logically showing how data within an organization
is related. They must be models using conventions for either data structure
diagrams, or entity relationship diagrams. Exhibits 2.5.13-4 and 2.5.13-5
provide samples of these diagrams, and more detailed guidelines. The term
″entity″ refers to an object representing a-person, place, thing event about
which information is collected. When constructing either of these diagrams it is
recommended that the entities be limited to those of fundamental importance
to the organization.

2.5.13.6.5
(09-27-2022)
Entity-Attribute Lists

(1) Entity-attribute relation lists may be derived from the Enterprise Engineering
Data Dictionary listings.

2.5.13.6.6
(09-27-2022)
Data Definition Lists

(1) Data definition lists may be derived from Enterprise Engineering Data Diction-
ary listings. Exhibit 2.5.13-6 provides a sample.

2.5.13.6.7
(09-27-2022)
Physical Database
Specifications Document

(1) The objective of this subsection is to state the required content for Physical
Database Specifications. Duplication of effort can be eliminated if there are
existing documents available containing physical specifications. Use the
following resources for developing documentation:

• DBMS Documentation: For example, a listing of the scheme from a
CODASYL DBMS will provide details as data names, sizing, placement,
and access methods.

• Data Dictionary Listing: Provides certain physical specifications, e.g.,
data format and length.

• Project Documentation: All documentation submitted as Physical
Database Specifications must be organized in a macro to micro manner,
or global to specific. Hence, begin at the schema level, moving to
subschema, indices, data elements, etc. The objective is to organize
documentation in a manner that is clear, and easy for the user to read.

• Adhere to the standards and guidelines

2.5.13.6.7.1
(09-27-2022)
Physical Database
Names

(1) Where appropriate in the documentation, identify names of physical database
items. Specifically, the items will be all those defined to the DBMS software,
such as:

• Attribute Name
• Subject Area Name
• Super Class or Class
• Schema
• Subschema
• Set
• Record
• Field
• Key
• Index Names
• Relationship Name

(2) Be atomic, and represent only one concept.

(3) Be unique, avoid adding a name like that of another.

Database Design Techniques and Deliverables 2.5.13 page 37

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.6.7.1
Any line marked with a #
is for Official Use Only

(4) Be concise, using minimal words as possible.

(5) Table and column names must be sized to fit the requirements of the target
RDBMS. Different database products permit different lengths.

(7) Where data naming standards are applicable, these standards shall be met to
the extent possible with the DBMS software. For example, if the DBMS does
not permit hyphens in naming, an exception would be made to the standard
″all words in a name must be separated with a hyphen″.

(8) For more guidance on data naming see, IRM 2.152.3 IT Data Engineering,
Naming Data Elements/Object.

(9) For definition of all terms listed, see Exhibit 2.5.13-11

2.5.13.6.7.2
(09-27-2022)
Data Structure/Sizing

(1) Identification of data elements, associations within and between record types
as well as sizing requirements are identified and documented during the logical
database design process. The physical representation of data structures will
vary from the logical, however, since the physically stored data must adhere to
specific DBMS characteristics. As applicable to the DBMS, the following struc-
tures must be documented:

• Records
• Blocks/Pages
• Primary Key (PK) attributes
• Files

(2) Describe the physical record layout. In this description, include the data fields,
embedded pointers, spare data fields, and database management system
overhead (flags, codes, etc.). Besides data record types, document any other
record types such as index records. If records are handled as physical blocks
or pages, provide the following:

• Calculations determining block/page size
• Total number of blocks/pages allocated

(3) Describe the strategy for determining block/page sizes.

(4) Specify the amount of space allocated for each database file. This must be
consistent with the total record, and block/page sizing documentation
described above.

2.5.13.6.7.3
(09-27-2022)
Data Placement

(1) For each record type:

• State the storage and access method used
• Describe the storage and assess method
• Where applicable, identify the physical data location (track, cylinder)

(2) When using an algorithm access method:

• Provide the primary record key to be used by the algorithm

page 38 2.5 Systems Development

#
#
#
#

2.5.13.6.7.2 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

• Describe the algorithm used, including the number, and size of random-
ized address spaces available to the algorithm

• Give the packing density, and the strategy for its determination

(3) When using an index sequential access method:

• Provide the primary record key
• State indexing strategy/levels
• State initial load strategy

(4) When using chains access method:

• Provide the access path to the record type (i.e., Is this primary access
of detail record though the master record, or is this a chain of
secondary keys?)

• List the pointer options used (i.e., forward, backward, owner, etc.)
• Indicate whether the chain is scattered or stored contiguously with the

master

(5) When an index access method is used:

• Identify keys used to index a record type

2.5.13.6.8
(09-27-2022)
Database Schema
Refactoring Overview

(1) Refactoring is a way to restructure code in small steps, and enables the pro-
grammer to evolve the code to slowly over time. This is an iterative and
incremental approach to programming.

(2) Another very important aspect of refactoring is that it retains the behavioral
semantics, and improves the design of your code. Functionality is not added
when refactoring, nor is it taken away. An example of refactoring is to rename
the getBoxes() operation to getPallets().

(3) See another example in Figure 2.5.13-15 when applying a Push Down Method
refactoring to move the “SummarizeTotal()” operation from “Gift” into its
subclass “Statement” as seen you will need to change the code that invokes
this operation to with “Statement ”objects rather than “Gift” objects. After these
changes are done, your code is refactored.

Database Design Techniques and Deliverables 2.5.13 page 39

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.6.8
Any line marked with a #
is for Official Use Only

Figure 2.5.13-15

2.5.13.6.8.1
(09-27-2022)
Evolutionary Database
Techniques

(1) Evolutionary database techniques represent database processes that must be
developed both iteratively and incrementally. Examples of these processes are:

• Agile Unified Process (AUP)
• Dynamic System Development Method (DSDM)
• Extreme Programming (XP)
• Enterprise Unified Process (EUP)
• Rapid Application Development (RAD)
• Scrum

page 40 2.5 Systems Development

2.5.13.6.8.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
36192037 Any line marked with a #

is for Official Use Only

• Safe

(2) Database development iterative work is considered performing small stages of
repeatable processes for modeling, testing, coding, and organized into them
series of releases. Database developers need to adopt the evolutionary tech-
niques similar to those of developers (Thinking Agile). This is done by
accomplishing the following:

a. Developers must be proficient at data techniques, and data professionals
must learn modern development technologies and skills for the purpose
of having a better understanding of each other requirements.

b. One challenge of agile adoption for databases is unlike applications it
has a current state that must always be managed to maintain the
integrity of the data. However, despite this challenge development teams
need to implement the proper tools and processes for automating
database development and release tasks. If the entire software stack
including the database is evolving incrementally, flexibly, and rapidly the
organization could receive a better return on investments and shorter
response time for customer requirements.

2.5.13.6.8.2
(09-27-2022)
Database Refactoring
Categories

(1) Database categories for refactoring is comprised as seen in Figure 2.5.13-16

Refactoring Categories

Database Refactoring
Category

Description Examples

1 Structural

A modification to the definition
of one or more tables or views.

Moving a column from one table to
another or splitting a multipurpose
column into several separate
columns, one for each purpose.

2 Data Quality

A modification that improves the
quality of the information
contained within a database

Making a column non-nullable to
ensure that it always contains a
value or applying a common
format to a column to ensure con-
sistency.

3 Referential Integrity

A modification that ensures that
a referenced row exist within
another table and/or ensures
that a row that is no longer
needed is removed appropri-
ately.

Adding a trigger to enable a
cascading delete between two
entities, code that was formerly
implemented outside of the
database.

4 Architectural

A modification that improves the
overall manner in which
external programs interact with
a database.

Replacing an existing Java
operation in a shared code library
with a stored procedure in the
database. As a stored procedure it
is available to non-Java applica-
tions.

Database Design Techniques and Deliverables 2.5.13 page 41

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.6.8.2
Any line marked with a #
is for Official Use Only

Database Refactoring
Category

Description Examples

5 Method

A modification to a method (a
stored procedure, function, or
trigger) that improves its quality.
Many code refactorings are ap-
plicable to database methods.

Renaming a stored procedure to
make it easier to understand.

6
Non-Refactoring Transfor-
mation

A modification to your database
schema that changes its
semantics

Adding a new column to an
existing table.

Figure 2.5.13-16

2.5.13.6.8.3
(09-27-2022)
Common Indicators for
Refactoring

(1) Fowler (1997) presented the concept of a “code smell,” which is a common
category of problems in your code that signals the need to refactor it. Common
code smells include switch statements, long methods, duplicated code, and
feature envy.

(2) Common database problems that indicate the need to refactor it are as follows:

a. Multipurpose Column - If a column is being used for several purposes,
i.e. used for someone’s birth date as a customer or start date if that
person is a employee.

b. Redundant Data - Redundant data is a serious problem because the
same data is stored in numerous places, and causes inconsistencies with
the outcome of erroneous information.

c. Tables with Too Many Columns - When a table has many columns, it
indicates that the table lacks cohesion— it is trying to store data from
numerous entities. For example the Employee table containing columns
to store three different addresses or several phone numbers could
require the structure to be normalized by adding “Address” and “Phone
”tables.

d. Table with Too Many Rows - Large tables are suggestive of perfor-
mance problems because it becomes time- consuming to search a table
with thousands of rows. The solution is to split the table vertically by
moving some columns into another table.

e. Smart Columns - A smart column is when columns different positions
within the data represent different concepts. For example if the first four
digits of the personnel ID indicate the personnel’s home branch, then
personnel ID is smart column because you can parse it to discover more
granular information.

f. Fear of Change - “Fear of Change” can stop developers from taking
action, lead to “Resistance of Change” and could result in unmanageable
systems. For example, the fear of unwanted side effects when cleaning
up functioning components.

2.5.13.6.8.4
(09-27-2022)
Database Refactoring
Best Practices

(1) This section provides database refactoring best practices and strategies as the
following:

a. Data professionals must be knowledgeable with techniques that enable
them to work in an evolutionary way. Evolutionary database development
techniques are as follows:

page 42 2.5 Systems Development

2.5.13.6.8.3 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

• Database Refactoring - Develop an existing database schema a
small portion at a time to improve the quality of its design without
changing the semantics
• Evolutionary data modeling - Model the data aspects of a system
iteratively and incrementally as with other aspects of a system, to ensure
that the database schema evolves in step with the application code
• Database Regression Testing - Ensure the database schema works,
if it does not roll back the changes
• Configuration Management of Database Arfifacts - Database
models, database tests, test data, etc. must be managed like the Enter-
prise Life Cycle documentation
• Developer Sandboxes - When possible, provide separate sandboxes
for developers; they need their own working environment where they can
modify the portion of the system they are building, and get it working

b. Make smaller changes to your database because It is easier and less
risky to apply, and if something is broken the change can be identified
and rolled back faster.

c. Identify individual refactorings distinctly because refactorings normally
build upon each other and you need to ensure they are applied in the
correct order and add any dependencies between them.

d. When in a multi-application environment in which multiple project teams
may be applying refactoring to the same database schema, identify which
team produced a refactoring i.e., team 1 could have refactorings identifi-
cation ((ID) 01 - 07). See Version Identification Strategies in Figure
2.5.13-17

Version Identification Strategies

Approach Description Advantages Disadvantages

Build Number

The application build
number which is normally
an integer number that is
assigned by your build
tool whenever your appli-
cation compiles, and all
your unit tests run suc-
cessfully after a change

• Easy strategy
• Refactorings can

be treated as
First In, First Out
(FIFO) queue to
be applied in
order by the
build number

• Database
version can be
directly linked to
the application
version

• Many builds do not
involve database
changes; therefore,
the version identifiers
are not contiguous for
the database

• The build is difficult to
manage when you
have multiple applica-
tions being developed
against the same
database because
each team will have
the same build
numbers

Database Design Techniques and Deliverables 2.5.13 page 43

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.6.8.4
Any line marked with a #
is for Official Use Only

Approach Description Advantages Disadvantages

Date/Timestamp
The current date/time is
assigned to the refactoring

• Easy strategy
• Refactorings

managed by
FIFO queue

• A script-based
approach to imple-
menting refactorings
using a date/
timestamp for a
filename can be in-
convenient

• A strategy is needed
to associate the refac-
torings with the
appropriate applica-
tion build

Unique Identifier A unique identifier, such
as a Globally Unique Iden-
tifier (GUID) or an
incremental value, is
assigned to the refactoring

May use existing strat-
egies for generating
unique values, e.g.
Globally Unique Identi-
fier (GUID) generator

• GUIDs are controver-
sial names

• A strategy is needed
to associate the refac-
torings with the
appropriate build

Figure 2.5.13-17

e. Implement a large change by creating many small increments. For
example, when applying a consistent naming strategy throughout your
database consider splitting an existing table into two.

f. Create a database configuration table for identifying the current schema
version of the database to enable you to update the schema. For
example, if you identify the refactorings using a date/timestamp strategy
you must identify the current schema version the same way.

2.5.13.6.8.4.1
(09-27-2022)
Database Refactoring
Preparation Process

(1) An analysis of the database table structure must be completed to ensure refac-
toring is appropriate .for your project. The database refactoring process is as
follows:

a. Verify that a database refactoring is relevant.
b. Deprecate the original database schema: support both the original and

new schemas in parallel to provide time for refactoring.
c. Test before, during, and after refactoring. Write test for:

• Testing the database schema by writing database oriented test with:
stored procedures and triggers, Referential Integrity (RI) rules, View defi-
nitions, default values, and data invariants (forms of constraints)
• Testing the way your application uses the database schema
• Validating your data migration
• Testing your external program code

d. Modify the database schema.
e. Modify external access programs(s) when necessary.
f. Run regression tests.
g. Version control your modified work.

page 44 2.5 Systems Development

2.5.13.6.8.4.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

2.5.13.6.8.4.2
(09-27-2022)
Database Refactoring
Strategies

(1) This section includes various strategies for implementing database refactoring.
The strategies are as follows:

a. Apply smaller changes, implementing smaller steps will decrease project
risk, and less likely to have defects.

b. Ensure individual refactorings are uniquely identified so they are applied
in the right order.

c. Ensure you have a build number strategy process to identify teams when
you are involved in a multi-application environment where multiple project
teams are applying refactorings to the same database schema

d. Implement a large change by breaking by up into increments. For
example, instead of splitting a table into two refactoring is done multiple
times for introducing new tables, moving columns, implementing a
primary key, etc.

e. Ensure a database configuration table is implemented. This is for identify-
ing the current schema version of the database. See example database
configuration table:

Implementation of a Database Configuration Table

Refactoring Number 21 to Schema

CREATE TABLE DatabaseConfiguration
(SchemaVersion NUMBER NOT NULL);

INSERT INTO DatabaseConfiguration
(SchemaVersion) VALUES (0);

UPDATE DatabaseConfiguration
SET SchemaVersion = 21;

Figure 2.5.13-18

f. Use triggers over views or Batch synchronization when possible.
For benefits see Figure 2.5.13-19

Database Design Techniques and Deliverables 2.5.13 page 45

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.6.8.4.2
Any line marked with a #
is for Official Use Only

Schema Synchronization

Strategy Description Advantages Disadvantages

Trigger

One or more
triggers are imple-
mented that make
the proper update
to the other
version of the
schema

Real-time
update

• Possible
perfor-
mance
bottlenecks

• Possibility
of trigger
cycles

• Possible
deadlocks

• Commonly
introduces
duplicate
data (data
is stored in
both the
original and
new
schema

Views
Representing the
original table (s)
are introduced

• Real-time
update

• No need
to move
the
physical
data
between
tables/
columns

• Updatable
views are
not
supported
by some
database,
or the
database
does not
support
joins within
an update-
able view

• Complexity
of introduc-
ing and
removing
views

page 46 2.5 Systems Development

2.5.13.6.8.4.2 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Strategy Description Advantages Disadvantages

Batch
Updates

A batch job that
processed and
updates the data
accordingly is run
on a regular basis

Performance
impact from
data synchroni-
zation is
absorbed during
non-peak loads

• Great
potential for
referential
integrity
problems

• Must keep
track of
previous
versions of
data to
determine
which
changes
were made
to the
record

• Often
creates
duplicate
data

Figure 2.5.13-19

2.5.13.7
(09-27-2022)
Database Management
System Software
Supported by the IRS

(1) The IRS supports various database management software which is installed on
both client-server application systems, and legacy application systems with
features for:

a. Data storage
b. Data backup and recovery
c. Data presentation and reporting
d. Data security management
e. Database communication
f. Multi-user access Control

(3) Database software is classified into six sub-types:

a. Analytical Databases: Allows users to pull data from a variety of
databases, and examine them for the purpose of quantifying, or
assessing performance of the business environment.

b. Data Warehouse Databases: Allows users to pull key data from a
variety of databases, and store it in a central location for reporting, or
other purposes.

Database Design Techniques and Deliverables 2.5.13 page 47

#

#
#
#
#
#
#
#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7
Any line marked with a #
is for Official Use Only

c. Distributed Databases: Pertains to centralized database management
systems that controls information stored in a variety of locations including
cloud, or network servers.

d. End-user Databases: Stores information that is used primarily by one
person, e.g., spreadsheets.

e. External Databases: Compiles information that must be accessed by a
variety of users via the Internet.

f. Operational Databases: Allows the user to modify data in real-time.

2.5.13.7.1
(09-27-2022)
IBM Enterprise Database
2 Universal Database
(DB2 UDB) Overview

(1) DB2 is a Relational database Management System product of IBM which was
release during 1996 for distributed platforms, and designed to store, analyze
and retrieve data. The Universal Database (UDB) DB2 Server can run on any
operating systems such as Linux, UNIX, and Windows. During 2016, IBM
released DB2 11.1 with enhanced analytics, increased availability, reliability,
and included more security for business applications.

2.5.13.7.1.1
(09-27-2022)
DB2 Physical Objects

(1) The Enterprise Data Standards and Guidelines Office (EDSG) developed
twelve (12) DB2 unique DBMS objects standards and guidelines. A data
element entered is not correct, or complete unless there are entries in all
mandatory fields. See Figure # # 2.5.13-20 # below:

page 48 2.5 Systems Development

#
#

#
#
#
#
#
#
#
#
#

#

#
#
#
#
###

##

#
#
#
#

#
#
#
#
#

2.5.13.7.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Database Design Techniques and Deliverables 2.5.13 page 49

#
#
###

####

#
#
#
#
#
#
#

###

#
#
#
#
#
#

#

####
#

##

#
#
#
#
#
#

#

##

#
#
#
#
#
#
#
#
#

#
#
#
#
#

##

#
#
#
#
#
#
#

#
#
#
#
#
#

##

#
#
#
#
#
#
#

#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.1.1
Any line marked with a #
is for Official Use Only

2.5.13.7.1.2
(09-27-2022)
DB2 Performance
Standards and
Guidelines

(1) During the initial DB2 environment design process of creating a strategy for
quality performance, the focus must be on DB2 database, applications, and/or
transactions that have the most importance workload. If the performance of the
applications accessing the database is addressed after development, it will be
more difficult, and time-consuming to make the modifications to obtain
adequate response-times.

(2) When designing for performance, objectives must be realistic when determin-
ing what applications have the most vital workloads, and be in-line with the
organization’s expectations based on the following characteristics:

a. Data processing needs and priorities
b. Largest percentage of the total business workload
c. Critical response time requirement
d. Data access requirements and/or complex logic
e. Using vast amounts of resources (CPU, memory, Input/Output)

page 50 2.5 Systems Development

#
#
###

##

#
#
#
#
#
#

#

#
#
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#

###

#
#
#
#
#
#

#
#
#
#

###
#
#

#
#
#
#

#
#

#
#
#
#

2.5.13.7.1.2 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

f. Direct interface with customer/end users via web in contrast with applica-
tions that are internal to IRS

g. Security requirements
h. Performance that is measurable and monitored

2.5.13.7.1.2.1
(09-27-2022)
IRS DB2 Tables -
Designing for
Performance

(1) This subsection specifically addresses the best organization of database
tables, columns, and optimum index definitions for enterprise DB2 performance
established by the EDMO Database Administration team. The goal is to ensure
high quality, and efficient DBMS throughout the agency. See Figure # #
2.5.13-21 # for standards:

Database Design Techniques and Deliverables 2.5.13 page 51

#
#
###

##
#
#
#

##
#
#
#

##
#
#

#
#

##
#
#

##
#
#

#
#
#
#
#

#
#

#
#
####

##
#
#
#

#
#
#
#

#
#
#

#
#
#
#

#
#
#
#

#
#
#

##
#
#
#
#

#
#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.1.2.1
Any line marked with a #
is for Official Use Only

page 52 2.5 Systems Development

###

#
#
#
#
#

#
#
#

##
##
#
#
#

####

#
#
#
#
#

#
#
##
#
#
#
#

##
##
#

##
##
#
#

##
##
#
#
#

#
#
##

#
#
#
#
#

##
##
#

##
##
#
#
#

##
##
#
#
#

#
#
##

#
#
#
#
#

##
##
#

2.5.13.7.1.2.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Note: Important: Using the wrong data type for a column can mislead the DB2
optimizer. Cardinality could escalate, and the DB2 optimizer might not make
the correct decision when determining the path to the data.

2.5.13.7.2
(09-27-2022)
Structured Query
Language (SQL) Server
Overview

(1) Structured Query Language (SQL) Server is a relational database manage-
ment system, or RDBMS, developed by Microsoft. SQL Server is built on top of
SQL, a standard programming language for interacting with the relational
databases. Transact-SQL (T-SQL) is the main procedural language used by
Microsoft in SQL Server. It contains various extensions of standard SQL, i.e.,
local variables, control statements, transaction control, built-in functions, bulk
insert, and options on the DELETE and UPDATE statements. T-SQL is propri-
etary while SQL is open format.

(2) As of 2016, SQL Server 2017 became available, and runs on both Windows
and Linux environments.

Database Design Techniques and Deliverables 2.5.13 page 53

##
##
#
#

##
##
#
#

##
##
#
#

####
#
#
#

####
#
#
#

####
#
#
#
#

####
#
#

####
#
#

#
#

#

#
#
#

#

#

#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.2
Any line marked with a #
is for Official Use Only

2.5.13.7.2.1
(09-27-2022)
T-SQL Function Types

(1) T-SQL provides different support functions for string processing and data pro-
cessing. There are four types of functions:

a. Aggregate: Operates on a collection of values, but returns a single
value.

b. Ranking: Returns a ranking value for each partitioning row.
c. Rowset: Returns an object that can be used in a place of table reference

in the SQL statement.
d. Scalar: Operates on a single value and returns a single value.

2.5.13.7.2.2
(09-27-2022)
SQL Server Data Types

(1) SQL Server data type is a feature that specifies types of data of any object.
Each column, variable, and expression has related data type in SQL Server,
and can be used when creating tables. The seven categories of data types are
the following:

a. Exact Numeric Types:

Exact Numeric

Type From To

bigint -9,223,372,036,854,775,808 9,223,372,036,854,775,807

int -2,147,483,648 2,147,483,647

smallint -32,768 32,767

tinyint 0 255

bit 0 1

decimal -10^38 +1 10^38 –1

numeric -10^38 +1 10^38 –1

page 54 2.5 Systems Development

#

#

#

#

#

#

#

#

#

#

#

#

#
#

2.5.13.7.2.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Type From To

money -922,337,203,685,477.5808 +922,337,203,685,477.5807

smallmoney -214,748.3648 +214,748.3647

Figure 2.5.13-24 This table depicts the Exact Numeric Type

b. Approximate Numeric: Uses Read and float.
c. Date and time: Uses DateTime, Date, Datetime2, Dateoffset, Smalldate-

time, Time.
d. Character strings: Uses Char, Varchar, Text.
e. Unicode character strings: Uses Nchar, Nvarchar, Ntext.
f. Binary strings: Uses Binary, image and varbinary.
g. Other data types: Pertain to Cursor, Hierarchyid, sql_variant, Table,

Rowversion, Uniqueidentifier, XML, Spatial and Geography.
h. For additional information see, https://www.sqlshack.com/an-overview-of-

sql-server-data-types/.

2.5.13.7.2.3
(09-27-2022)
SQL Server and
Transact-SQL (T-SQL)
Best Practices

(1) SQL is not only for writing queries, you also need to ensure your queries have
good performance, fast and readable. This subsection describes best practices
that database designers and database development team must follow to create
coding standards and conventions in SQL Server database and/or T-SQL.

(2) The following rule is when creating a query in a relational database:

a. Use only T-SQL syntax for supporting SQL Server.
b. Use built-in and user-defined functions in SQL Server instead of third

party functions for the reason of portability, and ease of use.
c. Use End comment text which states a change in content with a period.
d. Add a new line if the length of comment text is greater than 100 charac-

ters.

• T-SQL Select Command: Do not use “*” in your SELECT queries
instead of specifying name of columns

2.5.13.7.3
(09-27-2022)
MySQL Overview

(1) MySQL was purchased by Sun Microsystems in 2008, and is open source with
premium add-ons. MySQL is used for website, and as a back-end database
solution for enterprise applications.

(2) During 2019 MySQL 8, included features such as NoSQL document store for
Big Data. This includes better sorting, support for partial updated crash-safe
DDL sentences, and JSON extended syntax.

2.5.13.7.4
(09-27-2022)
MongoDB Overview

(1) MongoDB is an open-source document oriented database built on a horizontal
scale-out architecture that uses a flexible schema for storing data. MongoDB is
written in C++, and was founded in 2007. MongoDB has a worldwide following
in the developer community.

(2) MongoDB is cross-platform database which means it can run on diverse
operating systems (Windows, Linux, and Mac) and computer architectures..

Database Design Techniques and Deliverables 2.5.13 page 55

#
#
#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.4
Any line marked with a #
is for Official Use Only

https://www.sqlshack.com/an-overview-of-sql-server-data-types/
https://www.sqlshack.com/an-overview-of-sql-server-data-types/

(3) MongoDB allows you to immediately start building your application without
spending time configuring a database. MongoDB was built on a scale-out ar-
chitecture, a structure that allows many small machines to work together to
create fast systems and handle huge amounts of data.

(4) Instead of storing data in tables of rows or columns like SQL databases, each
record in a MongoDB database is a document depicted in a Binary JSON
(BSON) and contains extensions that allow representation of data types that
are not part of JSON. Applications can retrieve this information in a JavaScript
Object Notation (JSON) format. This means the MongoDB document is a dic-
tionary of key-value pairs, where the value may be one of the number of types:

a. Primitive JSON types (e.g., number, string, Boolean)
b. Primitive BSON types (e.g., datetime, ObjectId, UUID, regex)
c. Arrays of values
d. Objects composed of key-value pairs
e. Null

(5) MongoDB has the following key capabilities:

a. Ad-hoc queries: Allows developers to update ad-hoc queries in real
time.

b. Indexing: Indexes allow for better query executions with quicker search
speed and better performance. Without this feather, a database will be
forced to scan each document to match query statements.

c. Replication: Mitigates vulnerabilities (e.g., multiple point-of-failures, such
as a server crash or server interruptions) by deploying multiple servers
for disaster recovery and backup.

d. Sharding: The process of splitting larger datasets across multiple distrib-
uted collections/shards assist with the database distribute and better
execute problematic and cumbersome queries.

e. Load balancing: Large-scale database management for growing enter-
prise applications through horizontal scaling features like replication;
therefore, there’s no need to add an external load balancer.

f. Consistency, Availability, Partition tolerance (CAP) theorem: This
enables greater flexibility in building a transactional data model that can
horizontally scale in a distributed environment and has no impact on per-
formance for multi-document transactions.

g. Best Portability: Runs the same everywhere, whether a local server or
cloud and is available globally as a service with cloud platforms..

(6) See example of information in a documents that display why normalization is
not required as follows:

Example of MongoDB Document Format

Example of Document for Phone Contact

{
”id_”: 10,
”name”: ”Tammy”,
”zip_code”: ”19923”,
”phone”: [”453-234-1999”, ”453-234-1966”]

}

page 56 2.5 Systems Development

2.5.13.7.4 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

(7) Cloud computing is the perfect choice for MongoDB because cloud-based
storage needs to distribute data across multiple servers easily.

2.5.13.7.4.1
(09-27-2022)
MongoDB Features and
Benefits over RDBMS

(1) MongoDB works on the concept of collection and document, and the database
is the physical container for collections. Figure 2.5.13-25 display the relation-
ship between Relational Database Management System (RDBMS) and
MongoDB:

MongoDB to RDBMS Comparison

MongoDB (NoSQL database) SQL database RDBMS

Database Database

Collection based and key value pair- a group of
MongoDB documents

Table based

Document based - a set of key-value pairs Tuple/Row based

Field
Column based: each column represents an
attribute

Embedded Documents Table Join

Contains a predefined schema Contains a dynamic schema

Primary Key (Default key_id provided by MongoDB
itself)

Primary Key or Key-value

No support for foreign key Support for foreign key

No support for triggers Support for triggers

Schemaless
Schema - predefines model for database and
data structures

Best fit for hierarchical data storage Not fit for hierarchical data storage

Horizontally scalable - adds more servers Vertically scalable - increases RAM

Emphasizes the CAP theorem (Consistency, Avail-
ability, and Partition tolerance) potential for being
ACID compliant

Emphasizes ACID properties (Atomicity, Consis-
tency, Isolation, and Durability)

Database Server and Client

mongod mysqld/Oracle

mongo mysql/sqlplus

Figure 2.5.13-25 RDBMS Comparison to MongoDB

2.5.13.7.4.2
(09-27-2022)
Types of NoSQL
Database Management
Systems (DBMS)

(1) MongoDB has four types of NoSQL DBMS as follows:

a. Key-value paired databases: Data is stored as key/value pair hash
table where each key is unique, and is designed with the capability of
handling heavy data loads. Key value stores help the developer to store
schema-less data. See example figure below:

Database Design Techniques and Deliverables 2.5.13 page 57

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.4.2
Any line marked with a #
is for Official Use Only

Key-value Database Example

Key Value

Agency Department of Education

State California

County Orange Grove

Occupation Educator

Age 36

Figure 2.5.13-26 Key Value Pair Based Database Example

b. Column-Oriented Databases: Allows you to store the columns of
data instead of rows, and are normally used to manage data ware-
houses, business intelligence, and CRM.

Column Family

Row Column Name

Key Key Key Key

Value Value Value

Column Name

Key Key Key

Value Value Value

Figure 2.5.13-27 Column-oriented NoSQL Database Example

c. Document-Oriented databases: see Table IRM 2.5.13.7.4
d. Graph-Oriented Database: A type of database used to represent

data in the form of a graph with three components as the
following:

• Nodes (or vertices): This is defined as the nouns in the
database, they store data about the people, place and things.

• Edges (or relationships): Defined as the verbs in the
database, they stored data about the actions that are done
between nodes.

• Properties: Used to model the data
• Labels: Used to tag a group of related notes

2.5.13.7.4.3
(09-27-2022)
MongoDB NoSQL Best
Practices

(1) Since MongoDB is a high performance NoSQL database it offers developers
working on high-performance applications horizontal scaling and load
balancing which includes a great balance of custom-tailoring and scalability.

(2) When designing your MongoDB schema ensure it is designed to work well with
your application. Two different applications using the same data could have
dissimilar schemas. Unlike RDBMS schema design MongoDB does not have a
formal process, algorithms or rules.

(3) To achieve high-performance with a NoSQL database consider:

page 58 2.5 Systems Development

2.5.13.7.4.3 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

a. Storage of data
b. Good query performance: Create indexes to improve query perfor-

mance; however, be cautions of too many indexes that are not being
used because it could result in slower performance.

• Best Strategy for Designing Indexes: Profile a variety of index con-
figurations with data sets similar to the ones you’ll be running in
production to see which configurations perform best. for more indexing
information see https://www.mongodb.com/docs/manual/applications/
indexes.

c. Use a reasonable amount of RAM : As applicable, select a platform that
has more RAM than your working data set size. The working set is the
set of data and indexes accessed during normal operations. Being able
to keep the working set in memory is very important for cluster
performance.

d. Consider using Sharding to increase the amount of available RAM in a
cluster.

(4) Know when to scale up: If your instance shows a load over 60%, consider
scaling up by sharding. Your load should be consistently below this threshold
during normal operations. If above 60% this could impact recover and vertical
scaling scenarios.

(5) Ensure you use compression.

(6) Ensure you store all data for a record in a single document.

(7) Eliminate all unnecessary indexes.

(8) Avoid large documents.

(9) Avoid negation in queries.

(10) Avoid unnecessarily long field names.

(11) Run a single MongoDB per server.

(12) Run explain() for every complex query.

(13) Use Solid Sate Drives (SSDs) for write heavy applications.

(14) Use bulk inserts when needed.

(15) Always use Replica Sets: Replica Sets provides an automatic failover.
Replica Sets in MongoDB is a group of mongod processes that maintain the
same data set. Replication provides high availability of your data if the primary
node fails in the cluster the secondary node will remain functional.

(16) Update only modified fields.

(17) Have at least one secondary and one arbiter.

(18) Set write concern to “2” when the data is critical.

2.5.13.7.4.3.1
(09-27-2022)
MongoDB Security Best
Practices

(1) MongoDB NoSQL’s security architecture must include the following:

a. User access management: Restrict access to sensitive data such as
Personal Identifiable Information (PII).

b. Auditing: Provide an analysis of all database actions and events.

Database Design Techniques and Deliverables 2.5.13 page 59

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.4.3.1
Any line marked with a #
is for Official Use Only

https://www.mongodb.com/docs/manual/applications/indexes
https://www.mongodb.com/docs/manual/applications/indexes

c. Data Protection: Ensure data is encrypted in-motion over the network,
in-use in the database, and at-rest in persistent storage.

d. Environmental Protection: The host operating system, network, and
database infrastructure must be secure.

(2) Database security is a major concern because of the increase in database
hacking incidents. Failure of developers to follow standard security practices
could result with a negative impact to the organization. See practices as
follows:

a. Encrypt the data where it is stored (Data at Rest): This feature is
available with MongoDB Enterprise and MongoDB Atlas.

b. Ensure all moving data: (Data in Transit): is encrypted appropriately.
c. Ensure audit trails are enabled: The purpose is to track any changes to

the configuration of the database.
d. Avoid using default ports: (e.g., 27017 and 27018) because hackers

will attempt to access the database through these default ports first.
e. Avoid improper user credential storage: Do not store passwords in

plaintext, see IRM 10.8.21 Security, Privacy and Assurance, Information
Technology Security, Database Security Policy and IRM 10.8.11 , Privacy
and Information Protection, Information Technology (IT) Security, Applica-
tion Security Policy.

(3) Encrypt all traffic with Transport Layer Security (TLS): A secure connection is
very crucial for ensuring that only trusted connections make it to the database,
and for communication between mongod, mongos, applications, and
MongoDB.

(4) Create separate security Credentials: Each entity must have unique credentials
to access the database.

(5) Role-Based Access Control: Recommend using predefined roles (i.e., out of
the box) such as dbAdmin, dbOwner, clusterAdmin and customize them to
meet the functional needs aligned with organizational policies.

a. Recommend creating separate login credentials for each application or
service that will access the database for the purpose of recorded in audit
trails

(6) Limit connections to the database: Allow connections only from a specific IP
address (i.e., whitelisting). This will mitigate any intruders gaining access to the
database and reduce risks.

(7) For more information on recommended database security see subsection IRM
2.5.13.8.1.

2.5.13.7.4.3.1.1
(09-27-2022)
MongoDB
Authentication and
Authorization

(1) Use MongoDB Atlas for robust encryption features. Encryption is the process
that transforms plaintext data into output known as ciphertext.

(2) MongoDB authentication is the process of validating the identity of a
client.(e.g., administrators, users, applications connecting to the database, or
MongoDB utilities).

(3) When authentication is enabled the database allows permissions for the clients
and servers to connect, restrict user actions based on roles, and the MongoDB
instance enables tracking and auditing of systems events.

page 60 2.5 Systems Development

2.5.13.7.4.3.1.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

(4) Use Salted Challenge Response Authentication Mechanism (SCRAM) which is
the default authentication mechanism for MongoDB when a user authenticates
themselves. SCRAM verifies the user credentials against the user’s name,
password and authentication database.

(5) Allow only trusted clients to access the network interfaces and ports where the
MongoDB instances reside.

(6) Disable direct Secure Shell (SSH) root access.

(7) Ensure you enable authentication and authorization as the following:

Enabling MongoDB authentication and authorization

1. Create an administration account
2. Start MongoDB without authentication initially
3. Connect to server using the mongo shell from the server itself and
write command as shown below:

mongo mongodb://localhost:27017

Note: Change the default port if you are using another port.

4. Create an administrator in the admin database as a database

Figure 2.5.13-28 Description of how to enable MongoDB
Authentication and Authorization

(8) Create login credentials for each entity because it is easier to define, manage,
track system access. If your credential are compromised it is easier to revoke
without interrupting access by other entities (e.g., human users, service
accounts and internal communication).

(9) Encrypt and protect all data using file-system permissions.

(10) For more information MongoDB security see, https://www.mongodb.com/docs/
manual/core/security-client-side-encryption.

2.5.13.7.5
(09-27-2022)
Big Data Models and No
Structured Query
Language (NoSQL)
Databases Overview

(1) Relational databases that store data in a fixed, tabular format is only enough
for small to intermediate-scale database applications.

(2) Big data normally refers to online transaction processing of high volumes of
data or digital information such as: Terabytes (TB) = 1,000 GB, Petabyte (PB)
= 1,000 TB, Exabyte (EB) = 1,000 PB, Zettabyte (ZB) = 1,000 EB, Yottabyte
(YB) = 1,000 ZB, and of low-density unstructured data. Since Big Data implies
enormous storage it would be costly, and unpractical when using relational
databases. Hence, NoSQL (non-relational databases) like “MongoDB” which is
document-oriented is currently used by IRS Information Technology systems
for big-data analytics and data warehousing.

(3) NoSQL databases does not use tables, nor the links between tables in order to
store and organize information. This database is critical for large volumes of
quickly changing data applications and real-time web applications because of
its ability to manage agility challenges, and provide highly resilient scalability
on the fly. There are four major types of NoSQL databases:

a. Column Database: Data is stored in a columnar format.

Database Design Techniques and Deliverables 2.5.13 page 61

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.5
Any line marked with a #
is for Official Use Only

https://www.mongodb.com/docs/manual/core/security-client-side-encryption/
https://www.mongodb.com/docs/manual/core/security-client-side-encryption/

b. Graph Database: This database is arranged in the form of a graph with
the elements connected using the relations between them.

c. Key-value database: This database is organized as key value pairs that
only appear once, e.g., Couchbase and ArangoDB.

d. Document Database: Document databases store data in documents
comparable to JavaScript Object Notation (JSON) objects, but can also
use XML, text, or Binary Large Object (BLOB).

(4) The benefits of using NoSQL databases are:

a. Flexible for developers to manipulate, and map to objects in their code
b. The schema dynamically adapts to change, and is self-designing — it

does not need to be pre-defined in the database
c. Document databases like MongoDB use JSON format so rules pertaining

to document structure can be imposed to store data

Figure 2.5.13-29

2.5.13.7.6
(09-27-2022)
Oracle Database Design
Overview

(1) Oracle database (Oracle DB) is a relational database management system
(RDBMS) from the Oracle Corporation which was originally developed during
1977. This system has a relation database framework where data objects may
be directly accessed by users, or application front end via SQL. Oracle is a
fully scalable relational database architecture, and is used by global enter-
prises.

(2) The key to database and application performance is design, not tuning.

(3) Oracle SOAP (Simple Object Access Protocol) interfaces support (Atomicity,
Consistency, Isolation, and Durability) ACID compliant database transactions
which guarantee transactions are processed reliably.

2.5.13.7.6.1
(09-27-2022)
Oracle - Design for
Performance Best
Practices

(1) Design for Performance: When the design is poor the data model is not
efficient. A great start to an efficient design is well-defined performance goals
and metrics, and a good benchmarking strategy; therefore, design goals for
developers must be the following steps:

a. Design quality Data Models for Optimal Performance: This is very
important — perform frequent queries by doing the following:

• Analyze the data requirements of the application
• Implement the database design for the application
• Maintain the database and database application by monitoring the

system

page 62 2.5 Systems Development

#
#
#

2.5.13.7.6 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
36192035 Any line marked with a #

is for Official Use Only

• Schedule the maintenance periods, and inform users when it will
begin

• Fix any bugs, apply patches and release upgrades
b. Tools for Performance: Use performance tools for reporting runtime in-

formation about the application as the following:
• DBMS_APPLICATION_INFO Package: Use this package with the

SQL Trace facility and Oracle Trace, and to record the names of
executing module, or transactions in the database.

• SQL Trace Facility (SQL_TRACE): For best results, use this tool
with “TKPROF” formats the trace file contents in a readable file. The
EXPLAIN PLAN statement show the execution plans chosen by the
optimizer, and the execution plan for the specified SQL statement if it
were executed in the current state.

• EXPLAIN PLAN Statement: This statement stores the execution
plan for the statement in a plan table after a SQL statement is run, and
the optimizer generates several execution plans. The plan table
contains optimization information such as the cost, and cardinality of
each operation, accessed partitions, and distribution method of join
inputs.

c. Testing for Performance: Use the following guidelines for testing an ap-
plication performance:

• Automatic Database Diagnostic Monitor (ADDM): ADDM is used
for design validation, and determines where database performance
problems might exist, and recommends corrections.

• SQL Tuning Advisor: SQL Tuning Advisor which is also used for
design validation, e.g., if ADDM finds high-load SQL statements SQL
Tuning Advisor can analyze the statements, and provide tuning recom-
mendations.

• Test a Single User Performance First: Start testing in a single user
mode first; therefore, if an acceptable performance is not achieved with
low loads, then multiple user cannot obtain acceptable performance.

d. Design for Scalability: Use appropriate application development tech-
niques, i.e., bind variables, and Oracle Database architecture features
like shared server connections, clustering, partitioning, and parallel op-
erations.

2.5.13.7.6.2
(09-27-2022)
Relational Database
Design Rules and SQL
Coding Standards

(1) This section is for enterprise database design, regulation of linked databases,
e.g., COMMON databases, MASTER databases, and Transaction databases.
See Exhibit 2.5.13-13

2.5.13.7.7
(09-27-2022)
PostgreSQL Overview

(1) PostgreSQL is authorized for IRS use, and is an open source enterprise -
class relational database based on POSTGRES, version 4.2. It was created at
the University of California, at Berkeley Computer Science Department. Postgr-
eSQL is the descendant of this Berkeley code, and offers features as follows:

• Complex queries
• Foreign keys
• Triggers
• Updatable views
• Transactional integrity
• Multi-version concurrency control
• Streaming Replication as of version 9.0

Database Design Techniques and Deliverables 2.5.13 page 63

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.7
Any line marked with a #
is for Official Use Only

• Hot Standby as of version 9.0

(2) PostgreSQL is cross-platform it runs on Windows, Linux, FreeBSD, and UNIX
Solaris operating systems, and includes features like Oracle and IBM DB2.
PostgreSQL supports high concurrent traffic loads and full ACID compliance for
transactions. PostgreSQL 11.1 was released in November 2018. It is a highly
scalable database that supports both SQL and JSON querying.

(3) PostgreSQL includes many features to help developers write stored proce-
dures and functions in various programming interfaces (e.g., Procedural
Language (PL)/Perl, PL/Python, PL/Ruby, and PL/R, Tcl and Open Database
Connectivity (ODBC)).

(4) The primary differences between PostgreSQL and MongoDB are as follows:

PostgreSQL and MongoDB Comparison

Comparison between MongoDB PostgreSQL and

PostgreSQL MongoDB

Best used for transactional applications - normal-
ized type, joins, data constraints and transactional
support.

Best use is with Big data with high volume and
velocity wherever data consistency and integrity
are not required.

For business logic PostgreSQL is centralized with
triggers procedures.

For business logic MongoDB is distributed across
applications.

In MongoDB there are various drivers available for
using such as C, C++, Python, Java

PostgreSQL supports languages like C, C++
Python and Java.

In MongoDB, you can insert documents with
varying schema. All documents should not have to
adhere to a fixed schema.

In PostgreSQL, you can not insert records that
have a varying schema.

MongoDB does not support joins PostgreSQL support joins

It is the best-suited database for IoT and real-time
analytics

Use PostgreSQL if you need a transactional and
ACID-compliant database.

Data Types: Boolean, Character, Numeric,
Temporal, UUID, Array, JSON, key-value pairs,
and special types such as network address and
geospatial data.
BSON maximum document size - 1.6 TB

Data Types: String, Numeric, Boolean, Min/Max
keys, Arrays, Timestamps, Object, Null, Symbol,
Date, Object ID, Binary, Code, and Regular Ex-
pression.
BSON maximum document size - 16 MB

Scalability: Scaling is built-in, you can have many
nodes as required in a sharded cluster

Scalability: An extension is required to add the
capability. No limit on database size

Consistency and Availability: Similar setup as
MongoDB with a single master, and passive nodes
can be configured for reading.

Consistency and Availability: Has a single
master in a replica set that can accept reads and
writes, and the secondaries can be configured for
reading.

Figure 2.5.13-30 Depiction of Comparison Table for PostgreSQL and MongoDB

page 64 2.5 Systems Development

2.5.13.7.7 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

2.5.13.7.8
(09-27-2022)
PostgreSQL Data Types

(1) When creating tables a data type is necessary to store in table fields. Proper
use of the data types provides efficient storage of data. Users can also create
their own custom data types by using the SQL command “CREATE TYPE
SQL”. The different PostgreSQL categories of data types are as follows:

a. Numeric types: Consist of two-byte, four-byte, and eight-byte integers,
four-byte and eight-byte floating-point numbers, and specifiable-precision
decimals as seen in Figure 2.5.13-31 .

Numeric Types

Name
Storage

Size
Description Range

smallint 2 bytes small-range integer -32768 to +32767

nteger 4 bytes typical choice for integer -2147483648 to +2147483647

bigint
8 bytes large-range integer

9223372036854775808 to
9223372036854775807

decimal
variable

user-specified precision,
exact

Up to 131072 digits before the decimal
point; up to 16383 digits after the decimal
point

numeric
variable

user-specified precision,
exact

Up to 131072 digits before the decimal
point; up to 16383 digits after the decimal
point

real 4 bytes variable-precision, inexact 6 decimal digits precision

double
precision

8 bytes variable-precision, inexact
15 decimal digits precision

smallserial
2 bytes

small autoincrementing
integer

1 to 32767

serial 4 bytes autoincrementing integer 1 to 2147483647

bigserial
8 bytes

large autoincrementing
integer

1 to 9223372036854775807

Figure 2.5.13-31 Depiction of Table for PostgreSQL Numeric Data Type

b. Monetary Types: Do not use Floating point numbers due to the possibil-
ity of rounding errors. This type stores a currency amount with a fixed
fractional accuracy. Values of the numeric, int, and bigint data types
can be cast to money as seen in Figure 2.5.13-32.

PostgreSQL Money Data Type

Name Storage Size Description Range

money 8 bytes currency amount 92233720368547758.08 to
+92233720368547758.07

Figure 2.5.13-32 Depiction of Table for PostgreSQL Money Data Type

c. Character Types: The general-purpose character types available in Post-
greSQL as seen in the table below.

Database Design Techniques and Deliverables 2.5.13 page 65

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.8
Any line marked with a #
is for Official Use Only

PostgreSQL Character Data Types

No. Name & Description

1
character varying(n), varchar(n)
variable-length with limit

2
character(n), char(n)
fixed-length, blank padded

3
text

Figure 2.5.13-33 Depiction of Table for PostgreSQL Character Data Type

d. Binary Data Type: The bytea data type allows storage of binary strings
as in the table given below.

PostgreSQL Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the
actual binary string

variable-length binary
string

Figure 2.5.13-34 Depiction of Table for PostgreSQL Binary Data
Types

e. PostgreSQL supports all SQL date and time types. Dates are
counted according to the Gregorian calendar. All the types have
resolution of 1 microsecond / 14 digits except date type, whose
resolution is day as seen in the table below.

PostgreSQL Date/Time Types

Name Storage Size Description Low Value High Value

timestamp [(p)] [without
time zone]

8 bytes
both date and time
(no time zone)

4713 BC
294276 AD

TIMESTAMPTZ 8 bytes
both date and time,
with time zone

4713 BC
294276 AD

date
4 bytes

date (no time of
day)

4713 BC
5874897 AD

time [(p)] [without time
zone]

8 bytes
time of day (no
date)

00:00:00 24:00:00

time [(p)] [with time
zone]

12 bytes
times of day only,
with time zone

00:00:00+1459 24:00:00-1459

interval [fields] [(p)]
12 bytes

time interval -178000000 years 178000000
years

Figure 2.5.13-35 Depiction of Table for PostgreSQL Date/Time Data Types

f. Boolean Type: PostgreSQL provides the standard SQL type Boolean.
The Boolean data type can have the states true, false, and a third state,
unknown, which is represented by the SQL null value.

page 66 2.5 Systems Development

2.5.13.7.8 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

g. Enumerated Type: Enumerated (enum) types are data types that consist
of a static, ordered set of values and are equivalent to the enum types
supported in a number of programming languages. Unlike other types,
Enumerated Types must be created using the “CREATE TYPE
”command. This type is used to store a static, ordered set of values. After
Enumerated is created, it can be used like any other types. (e.g., days of
the week) as shown below.

PostgreSQL Enumerated Type

Example of Enumerated Type

CREATE TYPE week AS ENUM (’Mon’, ’Tue’, ’Wed’, ’Thu’, ’Fri’, ’Sat’, ’Sun’);

h. Geometric Data Types: Represents two-dimensional spatial objects. The
most profound type, the point, forms the basis for all of the other types.

PostgreSQL Geometric Type

Name Storage Size Representation Description

point 16 bytes Point on a plane (x,y)

point 32 bytes Infinite line (not fully imple-
mented)

((x1,y1),(x2,y2))

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to polygon) ((x1,y1),...)

path 16+16n bytes Open Path [(x1,y1),...]

polygon 40+16n Polygon (similar to closed path) ((x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center point and
radius)

Figure 2.5.13-36 Depiction of Table for PostgreSQL Geometric Data Type

(2) For more information on PostgreSQL see a PostgreSQL tutorial link https://
www.postgresqltutorial.com/.

2.5.13.7.9
(09-27-2022)
PostgreSQL Best
Practices

(1) For the best database performance developers must practice good configura-
tion and maintenance of PostgreSQL as follows:

a. Use environment variables to expose connection strings (e.g., DATABA-
SE_URL).

b. Do not store database credentials in the codebase, the code is consid-
ered.

c. End all queries with a semi-colon (;).

Example of PostgreSQL Query Semi-colon Use

Example of Using Semi-colon with Queries

SELECT employee column FROM q_table;

Database Design Techniques and Deliverables 2.5.13 page 67

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.7.9
Any line marked with a #
is for Official Use Only

https://www.postgresqltutorial.com/
https://www.postgresqltutorial.com/

d. Avoid using “SELECT * ”whenever possible. Always stipulate only the
columns needed because this will reduce the query execution time.

e. Do not add changes directly to your Production database. Only apply
changes to the Production environment after all testing has been
completed satisfactorily.

f. Do not use CamelCase for object names (schema, table, column, etc.).
PostgreSQL will convert all entries to lowercase by default unless quoted.

g. Use “CONSTRAINT” although the following form is correct “column TYPE
PRIMARY KEY,” “CONSTRAINT” will eliminate PostgreSQL from
assigning a default name. See example

Example of Using PostgreSQL CONSTRAINT

Using CONSTRAINT

CONSTRAINT accounts_pk PRIMARY KEY (account_id)

Figure 2.5.13-37 Example of Using PostgreSQL CONSTRAINT

h. Do not use “id ”as the primary key name in every table. Create
something meaningful, see example below:

Example of Using PostgreSQL Primary key (PK) Names

For employment table, use employment_id.

For transportation table, use transportation_id

Figure 2.5.13-38 Creation of Meaningful PostgreSQL Primary Key Names

i. Do not connect to the PostgreSQL databases directly. Recommend devel-
opers use a (connection pooler) such as PGBouncer to configure clients.
This action should help reduce the memory and CPU footprint of open
connections.

j. Maintain Data Compatibility: Always implement foreign keys, checks, and
normalization practices to store data in the database.

k. Avoid Public Schema: Recommend creating a separate schemas for each
entity. Reason: If you create a new database and create a table without a
specific schema, PostgreSQL will automatically creates a public schema
and grant access to the role named “public”.

l. Create Audit Triggers: Audits will help track changes made to a table, who
made the changes and include the timestamp. This is a great benefit when
there is a need to track activities for a specific event.

m. Maintain Database Schema Version Control: All code written must be
included in a version control system. Use an IRS approved process for
creating versions for the database schema along with the rest of the
projects. See IRM 2.150.2 Configuration Management (CM) Process for
version control guidance.

2.5.13.8
(09-27-2022)
Database Security
Design

(1) All organizations must work on a continual basis protecting their databases
that have sensitive data by identifying and remedying security vulnerabilities
and exploits. In addition to doing monitoring and security assessments, ensure
results are analyzed and properly audited for demonstrating compliance with
federal security regulations: IRM 10.8.21 Information Technology (IT) Security,
Database Security Policy, OWASP, and NIST 800-53A industry standards.

page 68 2.5 Systems Development

2.5.13.8 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

2.5.13.8.1
(09-27-2022)
Database Design
Security Best Practices

(1) This subsection is guidance for ensuring adequate security controls for all
databases storing sensitive or protected data.

(2) For databases the following Federal Information Processing Standard (FIPS)
government standards must be followed:

a. FIPS 127-2: Identifies and describes the recommended construct sizes,
see Exhibit 2.5.13-14.

b. FIPS 140-2: Identifies the cryptographic security requirements, and is
designed to protect data at rest, and in transit over the network. FIPS
have several levels ranging from (1 - lowest) to (4 - highest).

2.5.13.9
(09-27-2022)
IRS Extensible Markup
Language (XML)
Overview

(1) As of January 2003, the IRS has approved XML as the recommended syntax
specification in more than 20+ applications. The Enterprise Data Management
Organization (EDMO) is the program lead, and collaborates daily with organi-
zations using projects associated with this language by establishing policy and
standards. The IRS XML Community of Practice (xmlCoP) was launched to
facilitate, and review the necessary changes XML policies, standards and
practices.

(2) Extensible Markup Language (XML) is used to define documents with a
standard format that can be read by an XML compatible application. XML can
be used with HTML pages, but is not a markup language. It is a “metalan-
guage - information used to describe language” that can be used to create
markup languages for particular applications.

(3) Technical experts can use XML to create a database of information without
having a real database. XML is commonly used in web applications, and other
programs, e.g., Arbortext which is a XML compatible application used to
create/update IRS Internal Revenue Manuals (IRMs).

(4) The XML Industry Standards are as follows:

a. The World Wide Web Consortium (W3C) is family of XML standards.
b. Electronic Business is using eXtensible Markup Language (ebXML).
c. Universal Business Language (UBL): UBL is an implementation of

ebXML, ebXML originally an Oasis standard is now an ISO standard (ISO
15000-5), and focuses on the design of reusable components.

2.5.13.9.1
(09-27-2022)
IRS Extensible Markup
Language (XML) Naming
and Design Rules

(1) EDMO is responsible for the IRS XML naming and design rules, and the
relevant standardized XML components or products after use. The naming and
design rules for constructing and naming XML components or products pertain
to:

a. Attributes
b. Data Types
c. Elements
d. Namespaces
e. Schema

(2) For all definitions, see Exhibit 2.5.13-11

(3) The main objective of the XML naming, and design rules is to maintain unifor-
mity, and interoperability across the IRS, and its data exchange partners. This

Database Design Techniques and Deliverables 2.5.13 page 69

Cat. No. 36192J (09-27-2022) Internal Revenue Manual 2.5.13.9.1
Any line marked with a #
is for Official Use Only

naming and design rules established by EDMO apply to all XML data
exchange between services, reusable system components, and system to
system interfaces.

page 70 2.5 Systems Development

#
#
#
#

2.5.13.9.1 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-1 (09-27-2022)
Guidelines for Decision Analysis and Description Forms

Database Design Techniques and Deliverables 2.5.13 page 71

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-1
36192021Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-2 (09-27-2022)
Guidelines for Task Analysis and Description Forms

page 72 2.5 Systems Development

Exhibit 2.5.13-2 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
36192022 Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-3 (09-27-2022)
Sample Task/Data Element Matrix

Database Design Techniques and Deliverables 2.5.13 page 73

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-3
36192023Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-4 (09-27-2022)
Guidelines for Constructing Data Structure Diagrams (DSD)

Hierarchical Network Structure

Hierarchical Network Diagram

Data structure diagrams can represent hierarchical structure, network structure, or a combination of
these structures. The following diagram depicts a hierarchical structure.

page 74 2.5 Systems Development

#

#

#
#
#
#
#
#
#

#

#
#
#
#
#

#
#
#
#
#

###

#

#
#
#
#
#
#

Exhibit 2.5.13-4 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
36192024 Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-4 (Cont. 1) (09-27-2022)
Guidelines for Constructing Data Structure Diagrams (DSD)

Explanation of Hierarchical Structure Above

Explanation of Hierarchical Structure 1

1. This depicts that an employee works several projects, and that each project must have only one
name and one completion date.

2. Hierarchical structures are distinguished from other relationships because every node must have
only one parent node, except the root, which has no parent.

3. The descendants of a node are called children

Database Design Techniques and Deliverables 2.5.13 page 75

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-4
36192026Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-5 (09-27-2022)
Relationship between Two Entities-Classes

Two Entity Classes

1.
These symbols do not indicate how many individual entities constitute each entity class. Relation-
ships depict cardinality, e.g., (One to One), (One to Many), (Many to Many), etc. The following
depicts a relationship between entity classes.

2. This relationship indicates that each Department comprises (One to Many) Employee

page 76 2.5 Systems Development

Exhibit 2.5.13-5 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
36192025 Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-6 (09-27-2022)
Explanation of Hierarchical Structure (One-to-Many) and (Many-to-Many) Relationships

Explanation of Hierarchical Structure 2

1. This network structure allows a logical record, entity, or entity class to have more than one parent.

2.

• The following examples show a one-to-many and a many-to-many relationship:
✓ The first example shows that a student has only one advisor and one major, but an advisor

counsels many students and many students choose a particular academic major.
✓ The second example shows that a student has many classes, and that a class comprises

many students.

Database Design Techniques and Deliverables 2.5.13 page 77

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-6
36192027Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-7 (09-27-2022)
Guidelines for Constructing Entity Relationship Diagrams (ERD)

page 78 2.5 Systems Development

#
##

##
#
#

##

#
#
#
#
#

##
#

###

##

##

###

###

###

###

#
#
#
#
#

Exhibit 2.5.13-7 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-7 (Cont. 1) (09-27-2022)
Guidelines for Constructing Entity Relationship Diagrams (ERD)

Database Design Techniques and Deliverables 2.5.13 page 79

#
#
##

#
#
#
#
#

##
#
#
#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-7
36192028, 36192029Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-7 (Cont. 2) (09-27-2022)
Guidelines for Constructing Entity Relationship Diagrams (ERD)

page 80 2.5 Systems Development

#
#
##

###
#

#
#
#

#
#
#
#

Exhibit 2.5.13-7 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
36192030 Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-7 (Cont. 3) (09-27-2022)
Guidelines for Constructing Entity Relationship Diagrams (ERD)

Database Design Techniques and Deliverables 2.5.13 page 81

#
#
#

#
#
#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-7
36192031Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-7 (Cont. 4) (09-27-2022)
Guidelines for Constructing Entity Relationship Diagrams (ERD)

page 82 2.5 Systems Development

#
#
##

#
#
#
#

###

###

###

##

##

##

##
#

Exhibit 2.5.13-7 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
36192032 Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-7 (Cont. 5) (09-27-2022)
Guidelines for Constructing Entity Relationship Diagrams (ERD)

Database Design Techniques and Deliverables 2.5.13 page 83

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-7
36192033Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-8 (09-27-2022)
Sample Data Definition List

Sample Data Definition List

Name Definition Length

(Name of data element) (Definition of data element) (Length of data element)

...

...

page 84 2.5 Systems Development

Exhibit 2.5.13-8 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-9 (09-27-2022)
Summary of Access Methods

Database Design Techniques and Deliverables 2.5.13 page 85

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-9
36192034Any line marked with a #

is for Official Use Only

Exhibit 2.5.13-10 (09-27-2022)
Acronyms and Terms

Acronyms Terms

ACID Atomicity, Consistency, Isolation, Durability

BLOB Binary Large Object

BSON Binary and JSON

CASE Computer Aided Software Engineering

CODASYL Conference on Data Systems Languages

CLOB Character Large Object

CRUD Create, Read, Update and Delete

CSV Comma Separated Value

CSS Cascading Style Sheet

DBA Database Administrator

DBMS Database Management System

DBRM Database Request Module

DDL Data Description (Definition) Language

DSD Data Structure Diagram

DSN Data Set Name

EDD Engineering Data Dictionary

EDSG Enterprise Data Standards and Guidelines

ERD Entity Relationship Diagram

FIFO First In First Out

GUI Globally Unique Indentifier

HTML Hypertext Markup Language

IoT Internet of Things

JSON Java Script Object Notation

LOB Large Object

MIB Management Information Base

ORDBMS Object Relational Database Management System

PID Process Identifier

PPDM Project Physical Data Model

PKI Public Key Infrastructure

RACI Responsible Accountable Consulted and Informed

page 86 2.5 Systems Development

Exhibit 2.5.13-10 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-10 (Cont. 1) (09-27-2022)
Acronyms and Terms

Acronyms Terms

RBAC Role Based Access Control

SAN Subject Alternative Name

SDLC System Development Life Cycle

SIEM Security Information and Event Management

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSD Solid State Disk

TLS Transport Layer Security

TTL Time To Live

UML Unified Modeling Language

XML Extensible Markup Language

W3C World Wide Web Consortium

WSDL Web Services Description Language

WSDL (NDR) WSDL Naming and Design Rules

Database Design Techniques and Deliverables 2.5.13 page 87

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-10
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-11 (09-27-2022)
Terms/Definitions

Terms Definitions

ACID
A set of properties for database transactions that guarantee validity
in the event of errors, power failures, or other adverse system
issues.

Algorithm
A process or set of rules to be followed in calculations or other
problem-solving operations.

Attribute

A data item that comprises a single piece of information about an
entity. It usually cannot be broken down into parts that have
meanings of their own. Attributes can be divided into two classes--
those that identify entity instances (occurrences) and those that
provide the descriptive properties of an entity.

Bachman Diagram
Another name for a data structure diagram. It is named for Charles
Bachman who invented it.

Bucket
An area of storage containing one or more records referred to by
the same address.

Buffer
Storage used to temporarily hold data being transferred from one
device to another.

Block
Usually a combination of two or more records which are read and
written jointly by one machine instruction.

Branches The relationship between the records in a tree (hierarchical) data
structure.

Business Rule
Obtained from users when gathering requirement, and are used to
determine cardinality

Byte

Computers use a combinations of eight bits, called bytes, to
represent one character of data or instructions. For example, the
word latch has five characters, and would be represented by five
bytes.

Cardinality
Expresses the minimum and maximum number of entity occur-
rences associated with one occurrence of a related entity.

Cascading Style Sheet

CSS is normally the standard way to define the presentation of
HTML pages. CSS controls the layout of the page features such as
the color, font, size, and the complete layout and is considered
more efficient than HTML.

Chain A list of data items strung together by means of a pointer.

Entity Integrity
Requires that every table have a primary key; neither the primary
key, nor any part of it, can contain null values.

CODASYL
A network data model developed by the Conference on Data
System Languages, Database Task Group.

Compaction Reduces the number of bits In data without effecting the informa-
tional content.

page 88 2.5 Systems Development

Exhibit 2.5.13-11 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-11 (Cont. 1) (09-27-2022)
Terms/Definitions

Terms Definitions

Conceptual Design
Description as part of the design process of how a new product will
work and meet its performance requirements.

Conceptual Model
The overall logical structure of a database (often referred to as con-
ceptual schema) which is independent of any software or data
storage structure.

Concurrency
In data base systems, refers to the number of run units actively
sharing the DBMS facilities.

Data Item
The smallest unit of data that has meaning in describing informa-
tion, the smallest unit of named data.

Database Administrator (DBA)
One or more individuals, possibly aided by a staff, who manage an
organization’s database resource.

Database
A collection of interrelated data stored together with controlled re-
dundancy to serve one or more applications; the data are stored so
that they are independent of the programs which use them.

Database Design
The process of developing a database structure from user require-
ments.

Data Description (Definition)
Language (DDL)

A language for describing data. In some cases, software uses DDL
only for logical data, or only for physical data, or both.

Database Design Methodology
A collection of techniques and tools employed within an organiza-
tional framework that can be applied consistently to successive
database development projects.

Database Management System
(DBMS)

The collection of software required for using a database, which
presents multiple views of the data to the users and programmers.

Data Independence
The property of being able to change the overall logical or physical
structure of the data without changing an application program view
of that data.

Data Model

A logical representation of the data structure that forms a database.
It should represent the inherent properties of the data independent
of software, hardware or machine performance implications. These
representations are independent of the class of software that will be
used for implementation.

Database link

A database link is a pointer that defines a one-way communication
path from an Oracle database server to another database server. A
database link connection allows local users to access data on a
remote database.

Deliverable
A deliverable is a tangible outcome that is produced during the
execution of a project.

Database Design Techniques and Deliverables 2.5.13 page 89

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-11
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-11 (Cont. 2) (09-27-2022)
Terms/Definitions

Terms Definitions

Dimension

A dimension is a schema object that defines hierarchical relation-
ships between pairs of columns or column sets. A hierarchical
relationship is a functional dependency from one level of a
hierarchy to the next level in the hierarchy. A dimension is a
container of logical relationships between columns and does not
have any data storage assigned to it.

Encryption
The process of encoding/decoding when transferring data to and
from the data base.

Entity
A person, place, thing or concept that interests an organization. An
entity is something about which data is stored. An entity has various
attributes which can be recorded, e.g., COLOR, SIZE, etc.

Gigabyte (GB) This is 1024 megabytes also named a Gig.

Hierarchical A tree structure where some records are subordinate to others.

Identifying Relationship
The primary key contains the foreign key; indicated in an ERD by
the solid line.

Implementation Design
A database design activity that involves transforming and refining a
conceptual schema into a schema that can be implemented through
a database management system.

Interface

The interconnections that allow a device, a program, or a person to
interact. Hardware interfaces are the cables that connect the device
to its power source and to other devices. Software interfaces allow
the program to communicate with other programs (such as the
operating system), and user interfaces allow the user to communi-
cate with the program (e.g., via mouse, menu commands, icons,
voice commands, etc.).

Key The data item which is used to address or identify a record.

Namespace

The canonical name for a collection or index in MongoDB. The
namespace is a combination of the database name and the name
of the collection or index, like so: [database-name].[collection-or-
index-name]. All documents belong to a namespace

Logical Database Design
A description of the structure of logical relationships among the data
elements of the system being designed.

Network
A structure in which a detail record can have more than one master
record.

Orphan Record
A record whose foreign key value is not found in the corresponding
entity (the entity where the primary key is located)

Overflow
An area of placement assigned to a record which for some reason
cannot be stored in its home address (i.e. logically assigned
address).

page 90 2.5 Systems Development

Exhibit 2.5.13-11 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-11 (Cont. 3) (09-27-2022)
Terms/Definitions

Terms Definitions

Materialized view

A materialized view is a database object that provides indirect
access to table data by storing the results of a query in a separate
schema object. A materialized view contains the rows resulting from
a query against one or more base tables, views, and/or other mate-
rialized views.

Package
Arrangement or collection of procedures and functions into logical
groupings.

Packing Density
The number of records stored in a bucket compared to the number
that could be stored.

Physical Database

A database in the form in which it is stored on the storage media,
including pointers or other means of interconnecting it. Multiple
logical databases may be derived from one or more physical
databases.

Procedure A particular course or mode of action, or a subfunction.

Relational
Pertaining to a database in normalized, two-dimensional flat form.
The DBMS recombines data elements giving different relations or
greater flexibility.

Real Time
Application or processing in which response to input is fast enough
to affect subsequent Input (i.e. terminal dialogues on interactive
systems).

Response Time
Total time between an instruction being given to access particular
data, and that data being available (seek time + read or write time).

Responsible, Accountable,
Consulted and Informed

The RACI matrix defines the roles and responsibilities for any
activity or group of activities and assigns ownership for their tasks
and decisions.

Schema
A map of the overall logical structure of the database covering all
data item and record types. The global logical view of the data.

Servicewide Data Dictionary
The authoritative source for the Service’s standard data names,
definitions and codes.

Sets
In CODASYL, refers to a collection of record types e.g., an owner
type if defined with one of its member types.

Sequence
Sequence numbers are Oracle integers of up to 38 digits defined in
the database. The sequence generator provides a unique sequen-
tial series of numbers.

Shard
A single mongod instance or replica set that stores some portion of
a sharded cluster’s total data set. In production, all shards should
be replica sets.

Sharded cluster
The set of nodes comprising a sharded MongoDB deployment. A
sharded cluster consists of config servers, shards, and one or
more mongos routing processes.

Database Design Techniques and Deliverables 2.5.13 page 91

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-11
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-11 (Cont. 4) (09-27-2022)
Terms/Definitions

Terms Definitions

Single-master replication
A replication topology where only a single database instance

accepts writes. Single-master replication ensures consistency and is
the replication topology employed by MongoDB.

Simulation To represent the functioning of one system by another.

Simple Object Access Protocol
A messaging protocol for exchanging structured information via web
services in a computer network.

Storage engine
The part of a database that is responsible for managing how data is
stored and accessed, both in memory and on disk. Different storage
engines perform better for specific workloads.

Subject Alternative Name

Subject Alternative Name (SAN) is an extension of the X.509 certifi-
cate which allows an array of values such as IP addresses and
domain names that specify which resources a single security certifi-
cate may secure.

Sub-schema
A map of a programmer’s view of data used. It is derived from the
schema.

Task

The lowest level of work that requires, on a repetitive basis, a
unique set of data. A unique unit of work consisting of a set of se-
quential steps all directed toward a common goal and all using
and/or creating a common set of data.

Transfer Time
Time taken to move data between a direct access device and the
central processor.

Volatile File A file with high rate of additions and deletions.

Tree Structure

A hierarchy of groups of data such as: 1) The highest level in the
hierarchy has only one group called a ″root″.
2) All groups except the root are related to one, and only one group
on a higher level than themselves.

World Wide Web Consortium
The primary international standards organization for the World Wide
Web which was founded in 1994.

page 92 2.5 Systems Development

Exhibit 2.5.13-11 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-12 (09-27-2022)
IRS Enterprise Life Cycle (ELC) Data Model Compliance Standards

Database Design Techniques and Deliverables 2.5.13 page 93

#
######

###
#
#
#
#

##

#
#
#
#
#
#

###

#

##
#
#
#
#
#

###

#
##
#
#
#
#
#

#

##
#
#
#
#
#

#

#
#

#

##
#
#
#
#
#
#

###

#

##
#
#
#
#
#

###

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-12
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-12 (Cont. 1) (09-27-2022)
IRS Enterprise Life Cycle (ELC) Data Model Compliance Standards

page 94 2.5 Systems Development

######

##

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

###

#

##
#
#
#
#
#

#

#
#
#
#
#
#

#

##
#
#
#
#

#

#
#
#
#
#

#

##
#
#
#
#
#
#

###

#
##
#
#
###

Exhibit 2.5.13-12 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-12 (Cont. 2) (09-27-2022)
IRS Enterprise Life Cycle (ELC) Data Model Compliance Standards

Database Design Techniques and Deliverables 2.5.13 page 95

######

#

##
#
#
#
#

###

#

##
#
#
#
#
#

###

#

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-12
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-13 (09-27-2022)
Relational Database Design Constancy Rules - Types of Data Storing in Table

page 96 2.5 Systems Development

#
####

#####

####

#
#
#
#
#

#
#
#
#
#
#

#
#
#

#
#
#
#
#

#
#
#

##
##
#
#

####
#
#

###
#
#
#

###
#
#
#

####
#
#

####
#
#

####
#
#

###
#
#
#
#
#

Exhibit 2.5.13-13 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-14 (09-27-2022)
FIPS 127-2 Database Construct Sizing

Sizing for Database
Constructs

FIPS Example of
Oracle

Compliance
Notes

1.
Length of an identifier (in
bytes)

18 30
Note: 1. - The numbers of SET

clauses in an UPDATE.

2.
Length of CHARACTER
datatype (in bytes)

240 2000

Note: 2. - The FIPS PUB defines
the length of a collection of
columns to be the sum of:
twice the number of
columns, the length of each
character column in bytes,
decimal precision plus 1 of
each exact numeric column,
binary precision divided by
4 plus 1 of each approxi-
mate numeric column.

3.
Decimal precision of
NUMERIC datatype

15 38

Note: 3 - The Oracle limit for the
maximum row length is
based on the maximum
length of a row containing a
LONG value of length 2
gigabytes and 999
VARCHAR2 values, each of
length 4000 bytes: 2(254) +
231 + (999(4000)).

4.
Decimal precision of
DECIMAL datatype

15 38

Note: 4 - The Oracle limit for a
UNIQUE key is half the size
of an Oracle data block
(specified by the initializa-
tion parameter
DB_BLOCK_SIZE) minus
some overhead.

Database Design Techniques and Deliverables 2.5.13 page 97

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-14
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-14 (Cont. 1) (09-27-2022)
FIPS 127-2 Database Construct Sizing

Sizing for Database
Constructs

FIPS Example of
Oracle

Compliance
Notes

5.
Decimal precision of
SMALLINT datatype

4 38

Note: 5 - Oracle places no limit
on the number of columns
in a GROUP BY clause or
the number of sort specifi-
cations in an ORDER BY
clause. However, the sum
of the sizes of all the ex-
pressions in either a
GROUP BY clause, or an
ORDER BY clause is
limited to the size of an
Oracle data block (specified
by the initialization
parameter DB_BLOCK-
_SIZE) minus some
overhead.

6.
Binary precision of FLOAT
datatype

20 126

Note: 6 - The Oracle limit for the
number of cursors simulta-
neously opened is specified
by the initialization
parameter OPEN_CUR-
SORS. The maximum value
of this parameter depends
on the memory available on
your operating system, and
exceeds 100 in all cases.

7. Binary precision of REAL
datatype

20
63

Left blank intentionally

8.
Binary precision of DOUBLE
PRECISION datatype

30 126
Left blank intentionally

9. Columns in a table 100 1000 Left blank intentionally

10. Values in an INSERT
statement

100 1000 Left blank intentionally

11. SET clauses in an UPDATE
statement (see Note 1)

20 1000 Left blank intentionally

13. Length of a row (see Note 2
and Note 3)

2,000 2,000,000
Left blank intentionally

14. Columns in a UNIQUE con-
straint

6 32 Left blank intentionally

page 98 2.5 Systems Development

Exhibit 2.5.13-14 Internal Revenue Manual Cat. No. 36192J (09-27-2022)
Any line marked with a #
is for Official Use Only

Exhibit 2.5.13-14 (Cont. 2) (09-27-2022)
FIPS 127-2 Database Construct Sizing

Sizing for Database
Constructs

FIPS Example of
Oracle

Compliance
Notes

15 Length of a UNIQUE con-
straint (see Note 2)

120 (see Note 4) Left blank intentionally

16 Length of a foreign key
column list (see Note 2)

120 (see Note 4) Left blank intentionally

17. Columns in a GROUP BY
clause

6 255 (see Note 5) Left blank intentionally

18. Length of GROUP BY column
list

120 (see Note 5) Left blank intentionally

19.
Columns in a referential
integrity constraint

6 32
Left blank intentionally

20.
Tables referenced in a SQL
statement

15 No limit
Left blank intentionally

21. Cursors simultaneously open 10 (see Note 6) Left blank intentionally

22. Items in a select list 100 1000 Left blank intentionally

Database Design Techniques and Deliverables 2.5.13 page 99

Cat. No. 36192J (09-27-2022) Internal Revenue Manual Exhibit 2.5.13-14
Any line marked with a #
is for Official Use Only

	Manual Transmittal
	 Table of Contents
	2.5.13.1 Program Scope and Objectives
	 2.5.13.1.1 Background
	 2.5.13.1.2 Authority
	 2.5.13.1.3 Roles and Responsibilities
	 2.5.13.1.4 Program Management and Review
	 2.5.13.1.5 Program Controls
	 2.5.13.1.6 Acronyms/Terms/Definitions
	 2.5.13.1.7 Related Resources
	2.5.13.2 Internal Revenue Service (IRS) Relational Database Design Guidance
	2.5.13.3 Data Modeling Overview
	2.5.13.4 Database Design Overview
	 2.5.13.4.1 Types of Database Models
	 2.5.13.4.2 Business Analysis Best Practices
	 2.5.13.4.2.1 Database Design - Mission, Functions and Operations
	 2.5.13.4.2.2 Identify Tasks Performed and Data Usage
	 2.5.13.4.2.3 Identify Task/Data Relationships
	 2.5.13.4.2.4 Develop a List of Constraints
	 2.5.13.4.2.5 Develop a List of Potential Future Changes
	 2.5.13.4.3 Data Modeling Design
	 2.5.13.4.3.1 Identify Local Views of the Data
	 2.5.13.4.3.2 Formulate Entities/Entity Modeling
	 2.5.13.4.3.3 Specify Relationships
	 2.5.13.4.3.4 Add Descriptive Attributes
	 2.5.13.4.3.5 Consolidate Local Views and Design Perspectives
	 2.5.13.4.3.6 Present Data Model
	 2.5.13.4.3.7 Verify Data Model
	2.5.13.5 Physical Database Design
	 2.5.13.5.1 Determine the User’s Requirements
	 2.5.13.5.2 Determine the Processing Environment
	 2.5.13.5.3 Select DBMS Software
	 2.5.13.5.4 Design the Physical Placement of Data
	 2.5.13.5.5 Perform Sizing of Data
	 2.5.13.5.6 Consider Security and Recovery
	2.5.13.6 Deliverables
	 2.5.13.6.1 Decision Analysis and Description Forms
	 2.5.13.6.2 Task Analysis and Description Forms
	 2.5.13.6.3 Task/Data Element Usage Matrix
	 2.5.13.6.4 Data Models
	 2.5.13.6.5 Entity-Attribute Lists
	 2.5.13.6.6 Data Definition Lists
	 2.5.13.6.7 Physical Database Specifications Document
	 2.5.13.6.7.1 Physical Database Names
	 2.5.13.6.7.2 Data Structure/Sizing
	 2.5.13.6.7.3 Data Placement
	 2.5.13.6.8 Database Schema Refactoring Overview
	 2.5.13.6.8.1 Evolutionary Database Techniques
	 2.5.13.6.8.2 Database Refactoring Categories
	 2.5.13.6.8.3 Common Indicators for Refactoring
	 2.5.13.6.8.4 Database Refactoring Best Practices
	 2.5.13.6.8.4.1 Database Refactoring Preparation Process
	 2.5.13.6.8.4.2 Database Refactoring Strategies
	2.5.13.7 Database Management System Software Supported by the IRS
	 2.5.13.7.1 IBM Enterprise Database 2 Universal Database (DB2 UDB) Overview
	 2.5.13.7.1.1 DB2 Physical Objects
	 2.5.13.7.1.2 DB2 Performance Standards and Guidelines
	 2.5.13.7.1.2.1 IRS DB2 Tables - Designing for Performance
	 2.5.13.7.2 Structured Query Language (SQL) Server Overview
	 2.5.13.7.2.1 T-SQL Function Types
	 2.5.13.7.2.2 SQL Server Data Types
	 2.5.13.7.2.3 SQL Server and Transact-SQL (T-SQL) Best Practices
	 2.5.13.7.3 MySQL Overview
	 2.5.13.7.4 MongoDB Overview
	 2.5.13.7.4.1 MongoDB Features and Benefits over RDBMS
	 2.5.13.7.4.2 Types of NoSQL Database Management Systems (DBMS)
	 2.5.13.7.4.3 MongoDB NoSQL Best Practices
	 2.5.13.7.4.3.1 MongoDB Security Best Practices
	 2.5.13.7.4.3.1.1 MongoDB Authentication and Authorization
	 2.5.13.7.5 Big Data Models and No Structured Query Language (NoSQL) Databases Overview
	 2.5.13.7.6 Oracle Database Design Overview
	 2.5.13.7.6.1 Oracle - Design for Performance Best Practices
	 2.5.13.7.6.2 Relational Database Design Rules and SQL Coding Standards
	 2.5.13.7.7 PostgreSQL Overview
	 2.5.13.7.8 PostgreSQL Data Types
	 2.5.13.7.9 PostgreSQL Best Practices
	2.5.13.8 Database Security Design
	 2.5.13.8.1 Database Design Security Best Practices
	2.5.13.9 IRS Extensible Markup Language (XML) Overview
	 2.5.13.9.1 IRS Extensible Markup Language (XML) Naming and Design Rules
	2.5.13-1 Guidelines for Decision Analysis and Description Forms
	2.5.13-2 Guidelines for Task Analysis and Description Forms
	2.5.13-3 Sample Task/Data Element Matrix
	2.5.13-4 Guidelines for Constructing Data Structure Diagrams (DSD)
	2.5.13-5 Relationship between Two Entities-Classes
	2.5.13-6 Explanation of Hierarchical Structure (One-to-Many) and (Many-to-Many) Relationships
	2.5.13-7 Guidelines for Constructing Entity Relationship Diagrams (ERD)
	2.5.13-8 Sample Data Definition List
	2.5.13-9 Summary of Access Methods
	2.5.13-10 Acronyms and Terms
	2.5.13-11 Terms/Definitions
	2.5.13-12 IRS Enterprise Life Cycle (ELC) Data Model Compliance Standards
	2.5.13-13 Relational Database Design Constancy Rules - Types of Data Storing in Table
	2.5.13-14 FIPS 127-2 Database Construct Sizing

