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Abstract 

The U.S. Census Bureau has the responsibility to release high quality data products while 
maintaining the confidentiality promised to all respondents under Title 13 of the U.S. Code. This 
paper describes a Microdata Analysis System (MAS) that is currently under development, which 
will allow users to receive certain statistical analyses of Census Bureau data. such as cross
tabulations and regressions. without ever having access to the data themselves. Such analyses 
must satisfy several statistical confidentiality rules: those that fail these rules will not be output 
to the user. In addition. the Drop q Rute. which requires removing a relatively small number of 
units before perlorming an analysis. is applied to all datasets. We describe the confidentiali ty 
rules and briefly outline an evaluation of the effectiveness of the Drop q Rule. We conclude with 
a description of other approaches to creating a system of this sort. and some directions for future 
research. 
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1. Introduction 

The U.S. Census Bureau coilects its survey and census data under Title 13 of the U.S. 
Code, which prevents the Census Bureau from releasing any data " ... whereby the data 
furnished by any particular establishment or individual under this title can be identified." 
In addition. to Title 13, the Confidel1tiallnfoI11lation Protection and Statis tical Efficiency 
Act of 2002 (CIPSEA) requires the protection of information collected or acquired for 
exclusively statistical purposes under a pledge of con.fidentiality. However. the agency 
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also has the responsibility of releasing data for the purpose of statistical analysis. [n 

common with 1110St national statistical institutes, our goal is to release as much high 
quality data as possible without violating the p ledge of confidentiality, as described in 

Duncan et al. (200 I) and Kaufman et al. (2005). 
This paper discusses a Microdata Analysis System (MAS) that is under development 

at the U.S. Census Bureau. Much of the framework for the system was described in 
Steel and Reznek (2005) and Steel (2006). The system is designed to allow data users 
to perform various statistical analyses (regressions, cross-tabulations, correlation coeffi
cients, etc.) on confidential survey and cenSllS microdata without seeing or downloading 
the underlying microdata. 

In Section 2, we give some background on the MAS and the motivation for its devel
opment. In Section 3, we discuss the current state of the prototype system, including its 
capabilities and the rules that protect confidentiality. [n Section 4, we briefly summarize 
a study of the effectiveness of the Drop q Rule, one of the disclosure avoidance mea
sures taken within the system. In Section 5, we examine some other approaches to the 
problem of creating a remote access system such as the MAS. In Section 6, we conclude 
with remarks on future research and the further development of the system. 

2. Background on the MAS 

The Census Bureau conducts reidentification studies on our public use microdata files. 
In these studies, we attempt to link our public lise files to external files that contain 
identifiers. It is reasonable to expect that with more publicly available data and expanded 
use of data mining tools, there will be an increase in the number and complexity of 
confidentiality threats. There is some concern that in order to meet the confidentiality 
requirements under which the Census Bureau operates, we may have to reduce the detail 
available in our data products and use more perturbation techniques to protect them, thus 
degrading the quality of the data. 

This problem of data confidentiality~at the Census Bureau and other statistical 
agencies arollnd the world~has motivated the creation of remote access ~ystems which 
allow the user to request a statistical analysis and receive the result without having direct 
access to the underlying microdata. Common to almost all remote access systems is that 
the ability to receive desired results is not absolute: in some instances, the result might 
be based on perturbed data, and 1110st proposals for remote access systems include the 
rejection of some queries to preserve confidentiality. The idea of a remole access sys
tem goes back at least to Keller-McNulty and Unger (1998), although the concept of 
allowing cllstomized queries was proposed much earlier; see the description of the Geo
graphically Referenced Data Storage and Retrieval System in Fellegi et al. (1969). Fel
legi (1972) anticipates the need to screen the que,y results to ensure that confidentiality 
is adequately protected. Adam and Worthmann (1989) describe several restrictions on 
systems that release COllnts of numbers of peop le with particular characteristics. These 
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include suppressing counts if the numbers are too close to 0 or to the full size of the 
database; requiring that multip le queries from the same user have only limited overlap; 
and keeping a log of each user's queries and checking each new query against the log 
to verify nondisclosure. However, they acknowledge that the last of these is sufficiently 
time consuming and storage intensive as to be unfeasible. They also consider the possi
bility of partitioning the data into indivisible units of two or more observations each and 
allowing only queries that operate on unions of the units, rather than on arbitrary se ts of 
observations. 

The Microdata Analysis System will allow the U.S. Census Bureau to provide a 
controlled, cost-effective setting in which data users have access to more detailed and 
accurate infonnation than is currently avai lable in our public use microdata fi les. The 
data accessible through the MAS can identify smaller geographic areas and show more 
detail in certain variables where our public use files would be coarsened. Our goal for 
the MAS is to allow access to as much high quality data as possible. An advantage of the 
MAS is that it lessens the need for data to be released in less secure or more expensive 
manners, such as those described ill Weinberg et al. (2007). A predecessor of the MAS 
is discussed ill Rowland and Zayatz (200 I). 

Unlike the proposal in Schouten and Cib'rang (2003). our plan is to make the MAS 
avai lable to anyone who wishes to use it. In a sense, the MAS will serve as a Research 
Data Center for the entire public, although there will be restrictions in place that a 
qualified researcher would not encounter at an established Research Data Center. The 
MAS will allow access to data from demographic surveys and decennial censuses, with 
the goal of eventually including economic survey and census data, as well as linked 
datasets. We will initially make available regression analyses and cross-tabulations, with 
other analyses to be added in the future. Currently, we intend to keep a record of all of 
the queries entered into the system, but not the identities of the users making the queries. 
Although the record will not directly affect the output that the system provides, it will 
allow us to see how the system is being used. Our goal in doing this is to improve the 
user experience and enhance the disclosure avoidance techniques if necessary. 

Our current plan- as described in Chaudhry (2007)-is to offer the MAS through 
the Census Bureau's free DataFERRETT service with the intention that the system wi ll 
be lIsed by people needing fairly simple statistical analyses: news media, some policy 
makers, teachers, students, etc. The MAS has a graphical interface that allows users 
to select variab les of interest from a list. [n the case of regression, variables can be 
dragged into equations and, with a few clicks, users may create variable interactions 
and transformations of selected variables. Some users may feel the need to use the 
underlying confidential microdata for more exploratory data analysis, but it is not 
apparent how to allow this within the MAS without violating confidentiality. These users 
may find our public use files, when ava ilable, meet their needs if they account for the 
decreased accuracy inherent in our disclosure avoidance procedures. Having a limited 
range of allowable analyses is a weakness of the MAS, but, other than expanding the 
nwnber of off-the-shelf analyses the system offers, it is difficult to sec how to remedy it. 
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3. Overview of the MAS Confidentiality Rules 

In 2005, the Census Bureau contracted with Synectics to develop an alpha prototype of 
the MAS using the SAS language. We also contracted with Dr. Jerome Reiter of Duke 
University to help in developing the confidentiality rules of the system and with Dr. 
Stephen Roehrig of Carnegie Mellon University to help in testing these rules. Some rules 
were developed and modified as a result of the testing. The beta prototype of the MAS 
implements a Java interface within DataFERRETT, which submits requested analyses to 
an R environment. We are using the publicly available data from the Current Population 
Survey March 2008 Demographic Supplement to test the system. 

The MAS software is programmed with several confidentiality rules and procedures 
that upbold disclosure avoidance standards. The purpose of these rules and procedures is 
to prevent data intruders from reconstructing the microdata records of individuals within 
the underlying confidential data through submitting mUltiple queries. The confidentiality 
rules discussed in this section are quite complex, and this discussion does not delve into 
the complexities. More detail can be found in Lucero (2009, 2010a). All analyses are 
subjected to two logical checks, referred to as the No Marginal 1 or 2 Rule and the 
Universe Gamma Rule, which ensure that no query is answered if the universe is too 
small or if the universe can be used to carry out differencing atlacks by comparing 
results of similar universes. Regression analyses are further subjected to restrictions on 
the use of predictor and response variables. We plan to explore whether additional rules 
are necessary for correlation coefficients. 

3.1. Confidentiality Rules for Universe Formation 

MAS users are allowed to nm their statistical analyses on a universe, or sub-population, 
of interest. Users are presented with a set of variables and category levels from which 
they can define a universe using condition statements on the variables. For example, if 
the uscr selects gender = 2(female) from the metadata, the universe is defined to be 
the sub·population of all females. A slightly more complicated universe is gender = 

I (male ) V employment statlls = O(lInemployed). One of the confidentiality rules reo 
quires that all variables used to define universes must be categorica l. 

Since a user may want to define a wliverse based on variables that are not inherently 
categorical (i.e., those that are continuous), raw numerical variables are presented to 
the user as categorical recodes based on output of a separate binning routine. This 
cutpoint program, outlined in Lucero et al. (2009b), creates bins of numerical values 
and ensures a pre-specified minimum number of observations between any two cutpoint 
values. Section 3.1.3 describes possible ways to generate cutpo ints. 

To define a universe using a numerical variable, a user is forced to choose from a 
predetermined li st of ranges the range that best meets her goal. For example, if a user 
wished to run analysis on people with incOI'1'le = $46,000, the user wou ld select the 
metadata income = 4, which is the range ($45 :000, $53,000] on the variable income 
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Table /. 7(lble representatioll of/he universe defined /iVIII (/) (lnd (2) 

iI/come 

gellder $0 to 528,000 $28,000 to S39,000 S39,000 to 545,000 $45.000 to 553,000 Total 

male "1 ,J "1,2 111.3 111 ,4 "\,. 

female " 2.1 112 ,2 1/2 ,] 1/2 ,4 n,. 

Total n., 1 " .,2 11 . ,3 11,,4 n ... 

and defines the universe as the sub-population of all individuals whose income is 
between $45 .000 and $53,000. Note that a user cannot define the universe to be the 
range i/lcome = ($39,000,$46,0001 unless $39,000 and $46,000 are among the pre

determined eutpoints. The user must choose a range of va lues consistent with the 
clltpoints that arc given. This is a crucial restriction on what a USCI' can do, since 
allowing arbitrary universe formation on continuous data could lead to a differencing 
attack disclosure, as described in Section 3,1.2. 

3.1.1. Confidentiality by Minimum Universe Size Requirements 

To define a universe in the MAS, the user would first select m recoded variables from the 
metadata, then select up tOj bins for each of the m recoded variables. Universe fomlation 
on the MAS is perfonned using an implicit table server. For example, suppose a data user 
defines the universe as the union: 

gender ~ female AND $45,000 < income ~ $53, 000 (I) 

OR 

gender ~ male AND $28,000 < income ~ $45,000 (2) 

This universe is rcpresented as selected cells from a two-way table of counts for 
gender and income, as shown in Table J, Note tbat there are n2,4 + nl,2 + Ill ,) total 
observations in this universe. For convenience, we will use the notation U(n) to denote 
a universe with 1/ observations, In most cases, it should be clear from the context which 
fI observations lie in the universe. In this example, the universe defined as the union of 
(1) and (2) will be refelTed (0 as U(n2,4 +nt ,2 + /11 ,3). 

In describing universes, we make a distinction between a simple universe and 
a complex universe. A simple universe is one that can be described using variable 
categories and the intersection set operator. A complex universe is constructed as the 
union of multiple simpie universes. 

All universes formed on the MAS must pass two confidentiality rules: the No 
Marginal I or 2 Rille and the Universe Gamma Rule. If a universe violates either of 
these rules, the MAS will reject the un iverse query and prompt the user to modify 
his selections. These ru les are tested prior to perfonning the user's sclected statistical 
analysis on the defined universe. 
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The No Marginal 1 or 2 Rule requires that for a universe defined using m variables, 
there may not be an In - I dimensional marginal total equal to 1 or 2 in the m-way 
contingency table induced by the chosen variables. The universe U(n2 ,4 + 11\ ,2 + nl ,)) 

passes the No Mwgillal I or 2 Rille if: 

h .. ~ 3 OR IIi •. = O. for i = 1.2) AND (n .. ) ~ 3 OR n .} = O. for j = 1 .... ,4) 

The Universe Gamma Rule requires that a universe must contain at least r observa
tions; otherwise no statistical analysis will be performed. The value of r is not given 
here since it is Census confidentia l. 

The way this rule is checked is dependent on whether the universe is disjoint or 
joint. A universe is classified as disjoint if its individual pieces do 110t share cell counts 
in common. For example, pieces (I) and (2) for the universe U(1l2 ._ + "l .' + 111 .3) are 
disjoint. Since U(n2,4 + nl ,2 + IlI ,3 ) is a disjoint universe. the MAS would check that 
piece (I) and piece (2) each contain at least r observations. Note that the eutpoint 
bins of income are combined within piece (2) prior to performing the test; however, 
bins representing different classes of an inherently categorical variable would not be 
combined. tn this case, since the 111 ,2 and Ill,] bins differ from each other on ly by a 
cutpoint variable, they are combined, and the MAS checks: 

A universe is classified as joilll if at least one of its individual pieces shares ce ll 
counts in common with at least one other piece. For example, suppose the user defines 
the universe U(II, .. +1I1.l +111 ._) = (3) OR (4), where (3) and (4) are given by 

[gellder = female[ 

[$39 ,000 < illcome :5 $53,0001 

(3) 

(4) 

tn this case, the observations in "2,3 and 112.4 - females with income in the interval 
($39,000, $53,000] - are included in both pieces (3) and (4). See Table 2. Since 
U(1I2 ,. + 111 ,3 + 1l1 ,4) is a joint universe, the Universe Gamma Rule would first check 
that pieces (3) and (4) contain at least r observations, following the disjoint universe 
scenario. Next. the intersection 1 = (3) n (4) # {} would be checked to determine 
that I contains at least r* observations, where r· :::; r is another Census confidential 
parameter. In this example. the MAS checks that the fo llowing inequalities are satisfied 
before any results will be returned: 

Once again. the clitpoint bins of income are first combined within piece (4) and within 
I prior to the testing of the Universe Gamma Rule. In general , when a joint universe 
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Table 1: Table repreSefll(llioll (lilhe IIl1iverse defined fivill (/) and (2). 

income 

gel/del' SO 10 528.000 S2R,OOO 10 S39.000 539.000 10 S45.000 $45.00010553,000 TOlal 

male 111 ,1 nl.2 nl.J "1 ,4 III, 

fema le "2,1 n2,2 1/2,3 ' 1I2,r "2,. 

Total 11 .,1 " .,2 n .,3 " .,4 " " 

Tn ES1 ES, Tn_I ES1 ES, 
G1 nl,1 1'/1 ,2 - G1 III , I 111 ,2- 1 
G, 112. 1 1l2.2 G, 112 ,1 112,2 

TI ES1 ES, 
= G1 0 I 

G, 0 0 

Figure 1: All Example of a DijJerellcing Attack Disclosure. 

is considered. all of the non-empty intersections of the pieces of the universe must be 
checked to make sure they are sufficiently large, 

3,1.2. Confidentiality by Random Record Removal 

While the preceding rules provide some protection of the confidential data in the MAS, 
they do not completely prevent differencing attack disclosures. A differellcing attack 
disclosure occurs when a data intruder attempts to reconstruct a confidentialmicrodata 
record by subtracting the statistical analysis results obtained through two queries on 
similar universes. Suppose a data intruder first creates two universes on the MAS, U(n) 
and U(II- I) (a proper subset of U(n)), where both contain the same II observations less 
one unique observation, i,e"IU(II)\U(II - 1)1 = I. The difference U(II)\U(II- I) = U(I) 
is a manipulated universe that contains the single target observation. For illustration, 
suppose a data intmder has prior knowledge of demographics in a small geographic 
area, and in particular is aware of individuals, households or establishments with unique 
characteristics within that area. Lt may be the case that there is only one non-citizen 
among the n residents of the area. Then the intmdcr may create U(Il) and U(n - 1), where 
U(n) is the fuJI universe of people in the area and U(II-1) is the universe consisting of 
citizens who live in the area. Suppose the data intruder then requests two separate cross
tabulations for gender by emp loyment status on these universes, Til and Tn - Io as shown 
in Figure I, Since U(n) and U(II - I) differ by a unique observation, Tn_ I will be exactly 
the same as Til , less one unique cell counl. 

We may perform the matrix subtraction TII - T,,_I = T I • where TI is a two-way table 
of gender by employment status bui lt upon the one unique observation contained in 
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U(n) \ U(n - I) = U(I). As shown in Figure I, T, contains a cell count of I in the male 
non-employed cell with zeros in the remaining cells, which tells the data intruder that 
the one unique observation contained in U(l) is an unemployed male. By performing 
differencing attacks similar to the one just described, a data intmder can successfully 
rebuild the confidential microdata record for the one unique observation contained in 
U(I). 

A differencing attack may also be a concern if there are two observations with in 
an area that have a certain characteristic, particularly if the intruder is himself one of 
these two. Suppose, for example, that the universe contains only two non-citizens, one 
of whom is the intruder. The intruder could then construct the full universe U(n) and the 
portion of the universe consisting solely of citizens U(n - 2). Since the intruder knows 
his own personal characteristics, he may manually remove himself from U(n) to get 
U(n - I) and then perform a differencing attack as above by comparing V(n - I) and 
U(Il - 2) to obtain infonnation on the other nOll-citizen in the area. 

To help protect against differencing attacks, the MAS implements a universe sub
sampling routine called the Drop q Rille. Traditionally, subsampling has usually been 
used to estimate parameters when a population is too large to analyze in an efficient 
manner and a (usually small) subsct can give approximately the same results as the full 
population. OUf aims are velY different here: the Drop q Rule is intended to remove just 
enough observations from the dataset to thwart a differencing attack. In most cases, a 
differencing attack perfonned whi le the Drop q Rule is in place wi ll not lead to a mean
ingful outcome, and even when it does, the intruder cannot be sure that the outcome 
found is the correct one. 

The Drop q Rille works as follows. A user-defined universe that passes a ll of the 
previous rules has q records removed at random. To do this, the MAS wi ll first draw 
a random value of Q,. = q, E {2, ... ,k} from a discrete UnirOrnl distribution with 

probability mass function P(Q" = qt} = k~ ' . Then, given Q,. = q" the MAS will 
subsample the universe V(II) by removing q, records at random from V(n) to yield a 
new subsampled universe U(II-q,). 

Within the MAS, all statistical analyses are performed on the subsampled universe 
U(II - q,) and not on the original universe U(n). Each unique universe U(n) that is 
defined on the MAS will be subsampled independently according to the Drop q Rule. 

To prevent an "averaging of results" attack, the MAS will produce only one subsampled 
universe U(n - q!) for each unique universe U(n) , with this unique subsample persisting 
for the lifetime of the system. That is, al\ users who select a specific universe U(n) 
will have a ll analyses performed on exact ly the same subsamplcd universe U(n - qd. 
To avoid obvious storage issues, the MAS accomplishes consistent subsampling of 
universes by using the same random sced to perfonn the subsampling every time a given 
universe comes up. To receive the full disclosure protection offered by the Drop q Rule, 

it is necessary that the seed, while constant for a given universe, differs across universes, 
and this can be implemented by having the seed be a function of the set of units in the 
lllllvcrsc. 
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The discrete uniform distribution is ideal for thi s purpose because of all distributions 
on {2 1 ••• • k}, it minimizes the probability that for two similar universes, the numbcr of 
observations dropped will be the same for both universes, which is a necessary cond ition 
for an apparent disclosure to be made on a single observation. 

Because each value used in the Drop q Rule is drawn from a discrete un ifonn 
di stribution, a data intruder attempting the difference attack Tn - Tn_ 1 = TI may find 
results inconsistent with forming two universes where U(n - J) C U(n) . as shown in 
Figure 2. The va lues of Xi} are the random numbers giving the number of observations 
dropped from each cell of Urn) in forming U(n - q,). Similarly. the values of )"j are the 
number of observations dropped from each cell of Urn - I) in fonning U(n - I - q,) 
respectively. Hence: 

L,L,Xij = qJ,O '5 xi} 5: ql 
i j 

L,LYiJ = Q2, O 5:Yij::; q2 
i j 

Here, j and} index the rows and columns, respectively. of the contingency table, with the 
obvious generalizations involving higher order multiple sums for higher-dimensional 
data. The resulting table T? may yie ld a successfu l disclosure of gender = G I (male) 
AND employment slalus= ES2 (unemployed) for the one unique observation contained 
in U(I), but it is much more likely to supply nonsense to the intruder. Coupled with 
the difficulty of finding candidate differencing attack universes, data intruders will find 
their time better spent elsewhere. Section 4 contains a brief overview of the effectiveness 
of the Drop q Rule against differencing attack disclosures. The nile is a crucial part 
of our di sclosure prevention strategy. The contracted work described by Roehrig et al. 
(2008) found several instances in wh ich a prototype version of the MAS lacking this rule 
was susceptible to differencing attacks, not just in theory but also in practice. However, 
their approach was to run a large number of tabulation queries and search for universes 
that were almost the same. This method cou ld be partly deterred by slowing down the 
system, requiring a wait time between each user query. 

Tn_ q ES, ES, Tn_' _q, ES, ES, 
G, fll , I -X I ,1 "1 ,2 -XU - G, Ill ,l -YI, I 1I1 ,2- I -YI ,2 

G, n2 ,1 -X2, 1 n2,2 - X2 ,2 G, n2.l - Y2, 1 n2,2 - )'2 ,2 

T ,! ES, ES2 
= G, Y I , I - XI ,I 1+)"" - x" , 

G, Y2, 1 - X2.1 Y2 ,2 - X2 ,2 

Figure 2: Differellcing AUdCk Thwarted by the Drop q Rule. 
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The Drop q Rule is a generalization of the previously used Drop I Rule and Drop 2 
Rule. where a small and fixed number of observations were removed before analysis. 
These rules led to tables tbat were susceptible to differencing attacks. One notable 
vulnerability could be exploited by s tarting, as usual, with two universes U(n) and 

U(n - I), identica l with the exception of one unit, with the intention of perfom1ing a 
differencing attack. For example. an intruder might know that a certain geographical 
region contains exactly one Korean War veteran. The intruder could then consider the 

universe of all people in tilat region, as compared to the universe of all non-Korean 
War veterans in the region. However, instead of requesting a tabulation of these two 
universes, tbe intruder may augment each universe by adding to it the f1111 population of 
a non-overlapping geographical region of size N > > II, such as a large state that does not 
contain the original region. Then a three-way tabulation could be done of veteran staniS 
versus state versus the variable that the intruder wishes to disclose for the augmented 

universes U(II+N) and U(n-I +N). ln the case of the Drop 2 Rille, it is overwhelmingly 
likely that all four of the dropped observations will be in the large region of s ize N, thus 
leaving the portions of the provided tables representing the original region of interest 
unmodified. We are currently examining other disclosure rules to prevent this sort of 
"padding" attack. 

A differencing attack leads to a cOlTect inference when the difference between the 
two matrices represented by the modified tables contains a 1 in the correct cell and Os 
in all other cells. in most cases, when the Drop q Rule is used, there are cells with both 

positive and negative numbers, and no inference can be reached by the intruder. It is 
also possible to obtain an apparent-but incorrect-inference, which occurs when the 
difference is a table with a I in one cell and Os in all of the others, but the I is not in the 

correct cell. 

3.1.3. Cutpoint Methods 

The cutpoints used in universe formation in the MAS are generated by a separate pro
gram. Various methods exist in the program, and each provides a different set of cut
points. as influenced by the empirical distribution of a variable. The methods imple
mented are fixed width, minimum width, increasing width, and partitioned binning. Cut
points for each variable in the dataset can use a different strategy, but the final cutpoints 

for a given variable are generated only once, after choosing an appropriate strategy. 
What follows is a basic description of each stmtegy. 

Fixed width binning ensures that all bins have the same width. This is implemented 

as finding a constant Wnl', such as 10, so that the distance from the minimum value 
to the maximum value of each bin will be WFW. Because bin widths are constant, the 
number of observations in each bin wi ll vary, c;:lUsing some bins to be sparsely populated 
while others are dense. The fixed width is chosen to be the minimum value WF/V such 

that all bins contain at least {3Fw observations, for some pre-detennined value f3FW. This 
can make WFW large, so that the resolution across dense areas of the data is too crude. 
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1'1 •• d Wldlh 8~"'1n1I Minimum WldIh DInning 

Ii 
, 

Figure 3: Fixed and Mil/imlln! Width Binning U II 1,000 N(O, I) random samples. 

In data following a Gaussian distribution, the bin width will be determined by the tails 
and the center bins will be quite dense. 

Minimum width binning uses a value {3Mw and creates bins such that each has as 
close to {3MW observations as possible. Identical realizations of the va riable will not be 
split across multiple bins. For example, considering a numerical variable X with support 
N, all observations with X = 5 will belong to the same bin regardless of the number 
of observations with X = 5. This approach tends to generate bins of smaller widlh Ihan 
other approaches, since it allows for finer resolution in dense areas of the data but al lows 
the bins to be much wider when covering sparse data in order to include at least {3MlY 
observations. 

Increasing width binning may be viewed as a comprom ise between fixed and 
minimum width binning. Increasing width binning starts with a fixed bin width, WI/ft, 

which gradually increases as the va lue of the variable increases. This corrects the 
problem in fixed widlh binning of bins tending to be large, while a lso allowing for a 
consistent bin width. which one does not get in minimum width binning. Considering 
income data, W/Jr might equal 25,000 at X = 0, but when the cutpoint reaches X = 

I ~O , ODD, W/W may jump to 150,000 as a way to deal with sparser data in Ihe tails. 
For sufficiently large X, we obtain a va lue of WIW = 00 once the number of remaining 
observations approaches some value a < 2{3tw . 

The previous binning methods are all refelTed to as bottom-up methods since they 
begin w ith some width value and starting point in the data and build bins from there. 
Altematively, partitioned binning is a top-down binning strategy in that it uses the data 
ag a whole in creating bins. Partiti oned binning begins by sorting the data and then splits 
the set into two subsets containing approximately the same number of observations. 
These two subsets are themselves each split into two smaller subsets in the same fashion. 
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Table]- Bills ('reared Oil the tialaset { J I 2 1 4 45 6} 

M Clhod Bin I Bin 2 Bil13 Bin 4 

Fixed IV; 1-2 3-4 5-6 NA 

Min, IV, \-\ 2-2 4-4 5-6 

fil l:. W. \-2 3-6 NA NA 

ParlitiOIl {'d \-\ 2-2 4-4 5-6 

[I - 6J 

/~ 
[I - 2J J4- 6J 

/ 1 1 ~ 
[I - iJ [2 -2[ [4 - 4) [5- 6) 

Figure 4: Purtitioned Binning 0 11 dataset {l , I,l.2.4,4,5.6} . 

This process continues as long as there arc at least {3pw observations in each bin. The 
final result is a binary tree of bins ofunequ.1 width. 

As a quick example of how each method pcrfonns on the same data, consider a 
dataset I, I ,2,2,4,4,5,6. Table 3 shows the cutpoints, or boundaries, for e.ch bin that the 
different algorithms will create. Assume that the minimum number of elements in each 
bin is {3MfN = 2. 

The binary tree for the partitioned binning is shown in Figure 4. A user may choose 
picces for the universe using any node shown in the diagram. 

Each approach has its own strengths and weaknesses, so which perfOLms best on 
a given variable depends both on the variable 's support and distribution and on the 
properties desired by the user. However, none of the methods considers the underlying 
distribution of a variable in building the bins, so there is a necessity to analyze the 
performance of a chosen method. Consider how each would pelfonn on a Gaussian 
distribution. Fixed width biIming may not provide the resolution desired around the 
mean, and increasing width binning is primarily useful when the probability density 
function of the variable in question is decreasing over most of the range of the variable. 
Partitioned and minimum width binning will produce similar results, but the cutpoints 
in the minimum width and partitioned approaches may provide binning so fine that the 
exact values for some records are at risk. 

3.2. Confidentiality Rules for Regression Models 

The MAS implements a series of confidentiality rules for regression models, in addition 
to the universe restTictions already mentioned . For example, users may only select 
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lip to 20 independent variables for any single regression equation. Users arc allowed to 
transform numerical variables only, and they must select their transformations from a 
pre-approved list. This prevents the user from performing transformations that deliber
ately overemphasize individual observations such as out liers. Currently, the allowable 
transfonnations are square, square root and natllral logarithm. 

Any fully interacted regression model that contains only dummy variables as pre
dictors poses a significant potential disclosure risk. as described in Reznek (2003) and 
Reznek and Riggs (2004). Therefore, users are allowed to include only two-way and 
three-way interaction tenns within any specified regression model, and no flilly inter
acted models are allowed. Furthermore, a two-way interaction is allowed only if both 
of the interacted variables appear by themselves in the model, and a three-way interac
tion is allowed only ifall three variables appear uninteracted in the model and each of 
the three associated two-way interactions appears. However, interactions do not count 
against the 20-variable limit (so that, for example, if a model includes two predictor vari
ables and their interaction, this is considered two variables, not three, for the purpose 
of the limit). Categorica l predictor variables are included in the model through the use 
of dummy variables for all categories except one reference category. The MAS uses the 
most common category as the reference category. In addition, each predictor dummy 
variable must represent a category containing a certain minimum number of observa
tions; if this minimum is not met, the dummy variable is omitted from the model. In 
effect, this means that very sparse categories are absorbed into the reference category 
level. The minimum allowable number of observations in a category is not given here 
since it is Census confidential. 

Prior to passing any regression output back to the user, the MAS also checks that R2 
is not too close to I. If R2 is too close to I, then the MAS wi ll suppress the output of 
the regression analysis, as releasing the results of the regression would allow est imation 
of the response variable with a high degree of accuracy if the values of the predictor 
variables for any unit were known. It may also be the case that the regression does not 
have an unreasonably high R2, but that there is a subset of units for whom the response 
variable can be predicted unusually well given the predictor variables. Regressions with 
this feature may also be supprcssed. The system may also suppress instances where an 
interaction tern1 leads to a sparse combination of categories, as this may be a disclosure 
risk. If all of these requirements are satisfied, then the MAS will pass the estimated 
regression coefficients and the Analysis of Variance (or Deviance) table to the user 
without restrictions (except for the absorption of categories mentioned above). If the 
requirements are not satisfied, the system may attempt to absorb additional categories of 
any categorical predictors into the reference category, as this may result in a regression 
whose output is allowed to be released. 

Sparks et al. (2008) propose some other confidential ity rules for regression, such 
as using robust regression to lessen the influence of out liers, although at the moment 
we still plan to use ordinary least squares regression when the response variable is 
numerical. 
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3.2.1. Synthetic Residual Plots 

To determine whether the regression adequately describes the data, diagnostics such as 
residual plots are necessary. Actual residual values pose a potential disclosure risk, since 
a data intmder can obtain the values of the dependent variable by simply adding the 
residuals to the fitted values obtained from the regression model. Therefore, the MAS 
does n01 pass the actual residual values back to the user. To help data users assess the fit 
of their ordinary least squares regression models, diagnostic plots are based on synthetic 
residuals and synthetic real va lues. These plots arc designed to mimic the actual patterns 
seen in the scatter p lots of the real residuals versus the real fitted values, or of the real 
residuals versus the va lues of the individual variables. 

The first step in creating synthetic residual plots is to create the synthetic dataset in 
such a way that the synthetic data mimic the actual data. Using the notation of Reiter 
(2003), let xp be a variable in thc co llccted datasct, for p = I, .. ,d. In the synthetic 
data8et, x; corresponds to the original xp variab le, with the superscript s indicating the 
use of a synthetic dataset. There are various methods to generate x~, but this discussion 
will follow the method described in Reiter (2003), both for creating synthetic data and 
for creating synthetic residuals, and our exposition and notation here mostly follow his. 

For categorical variables xp , x;, are generated from bootstrap sampling the collected 
data. If some categories arc sparsely populated, there is the potential for averaging 
the synthetic residual va lues at the sparse category to disclose real residuals, but 
otherwise this part of the algorithm poses negligible disclosure risk. One possible 
approach to this problem is to suppress residuals for categories that are sufficiently 
sparse. For continuous variables xp, the distribution of the variable is approximated non
parametrically using a kernel density estimator, and then inverse-cdfsampling is used to 
generate x;, from the approximate distribution. When Reiter's method is used, there is 
no one-to-one correspondence between rcal observations and synthetic observations, so 
there need not be any pruiicular relationship between the size of the actual dataset and 
the size of the synthetic sample. This feature helps to protect outliers, as an outlier in the 
original data may not appear in the synthetic plot or may appear more than once. ]n the 
case of categorical predictor variables, we let the synthetic sample size equa l the actual 
sample size, while in the case of numerical predictor variables, we let the synthetic 
sample size be the minimum of 5,000 and the actual sample size. This is because when 
making the synthetic and actual sample sizes equal in the numerical case, we found 
that the system was slow when dealing with large datasets, and that the vast majority 
of the time that the analysis took was spent on creating the synthetic residual plots for 
numerical variables. 

A shortcoming of the method for creating synthetic continuous predictors is that 
the kernel density estimator is not able to identify a probability mass at a single point, 
but rather will assume that the probability density function should be high in the 
neighborhood of that point. This should not invalidate the method, but it will affect the 
distribution along the x-axis for a pred ictor variable such as income, for whom many 
people have a true value ofO. 
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It should be noted that both of these methods for creating the synthetic data work 
with one variable at a time, i.e., x~ are drawn marginally, not jointly, and thus no valid 
analysis can be performed based on the joint distribution of the synthetic variables. 
This is not cun-ently a major concern. as it is not our intention to release synthetic data 
through the MAS. However, this does impose a limitation on the range of diagnostics 
that we can make available in the future based on synthetic varil:lbles generated lIsing 
this method. 

The next step is to generate the standardized synthetic residuals f" so that the 
relationship between t; and x~ at any point xkp in x~ is consistent with the relationship 
between t and x fJ around point 4 p . To accomplish this, we must make a different set 
of synthetic residuals for each predictor variable. Note that xf:p ' if numerical, will not 
necessarily be a value observed in continuous real data, but may be drawn wi th the 
inverse-cdf method. 

For each variable, the goal is to give the user something akin to a plot of the 
standardized residuals of U,e full (possibly multiple) regression model versus the va lue 
of xp. For a variable p and an index k, define 

The first term gives the expected value of the standardized residual for any given 
value of p; the second accounts for the variat ion of the actual standardized residuals 
around their expected values (which may change depending on the value of Xkp if 
heteroseedasticity is present); and the Ulird adds noise to further prevent disclosure. 

To calculate the first tenn bkp . a generalized addi tive model (GAM) is built for t and 
x p. The value bkp equals the value of the GAM curve at the point xip and is used to 
fit the values lkp to the general relationship of t and x p , ignoring for the moment tbe 
variation of t around its local mean. Note that t; will differ for every regression a user 
requests, and that it is important that the GAM not be OVCt-fit. In extreme cases, an ovcrfit 
GAM can create some of the same disclosure risks as releasing a regression with a high 
R2. There may be some difficulty in avoiding such an overfit in an automated setting. 
For categorical variables, a GAM cannot be fit, and we set bkp = 0 because whenever 
a regression including a categorical variable is performed, the mean residual among 
observations with any particular level of that categorical variable is O. 

Next, Ikp is shifted off the curve hkf, by Vkp. which represents the amount by which 
the points in the real data around xlp deviate from the curve. For the case where xp is 
numerical, we consider the real data standardized residual tj . where 

is the index of the unit inxp whose value is closest toxA-p' Ties can be broken by selecting 
randomly from all tied choices. Having found j, we compute Vkp = Ij - hjp where hjp is 
the value obtained from the GAM at Xjp. If xp is categorical, j is the index ofa randomly 
se lected observation in the real data such that Xjp = x kp' so we set vkp = I j. since h jp = O. 
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Finally, a noise term 11kI' "'-' N(O,a) is added to 'kp where, for each regression. a 
should remain constant so that there is not artificial heteroscedasticity in the synthetic 
residuals. The same random seed should be used for all regressions using the same 
dependent variable; if this were not done, there would be the possibility of running the 
same or similar models a number of times and averaging the different results, creating a 
disclosure risk. Careful selection of a is important, as a va lue that is too small may not 
provide enough protection against disclosure, while a value that is too large may cause 
patterns that arc of interest to a legitimate user to be dwarfed by random variation. 

When all steps are complete, the system creates a scatterplot of the synthetic 
residuals versus each numerical synthetic predictor variable, as well as a scatterplot of 
the synthetic residuals against the fitted value, with a kernel smoother used to show lhe 
general shape of the latter curve. To protect outliers, the scatterplot requires all synthetic 
standardized residuals to be in the interval [-4,4], with values that would otherwise be 
outside this range truncated appropriately. 

Since categorical predictors do not lend themselves to scatterplots, the residual plots 
for categorical variables are replaced by side-by-side boxplots. Sparks et al. (2008) 
propose that numerical predictor variables be binned in a cutpoint-like fashion, and that 
the bins be used to create categories for side-by-side boxplots, which can be returned to 
the user instead of scatterplots, with Winsorization being performed to protect outliers. 
Since this binning lowers the resolution with which we can see the variab le along the 
x-axis, Sparks et al. (2008) use it as a substitute for synthetic data. 

We are beginning to implement regression diagnostics for logistic regressions in the 
manner described in Reiter and Kohnen (2005). 

4. Evaluation: Effectiveness of the Drop q Rule 

What follows is a generalization of some results in Lucero et al. (2009a), although that 
paper considered an earlier. less secure version of the Drop q Rule in which q was a 
fixed value chosen in advance. We present only a brief overview of this evaluation here; 
full details are in Lucero (2010b). Given a pair of similar univen;es, U(Il) and U(Il- I), 
differing by only one unique observation, with 1l large, we consider the effectiveness of 
the Drop q Rule in preventing contingency table differencing attack disclosures of the 
form TJ = T,, ~q l - Til - I- in, as was shown in Figure 2. 

For this section, we will consider n contingency table giving the values of two 
categorical variables, with the same setup as described in Section 3.1. To make the 
notation somewhat less unwieldy, we denote the size of each cell in the contingency 
table using a single subscript, as shown in Figure 5, instead of the double subscript used 
previously. In the simplest case, the contingency table is 2 x 2 (two categories for each 
of two variables), but it could conceivably be larger- including either more categories 
for a particular variable or morc variables, which would lead to more dimensions and 
would require a more elaborate graphical representation. 
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Tn ES, ES, 
G, 11, 11, 
G, 113 114 

Figure 5: /lltls/ratiOIl o/llora/ion tlsed ill Sectioll 4. 

We also let II = (n l , •.. , n4 ) denote the proportions of observations within each of 
the cells of Tn and let ':It = (tp I • ... • tp 4) denote the proportions within Til- I. If 11 is large, 
then II ~ W'. Furthermore, let X denote the vector giving the number of observations 
removed from each of the four cells when ql observations are dropped from Til to 
produce T n-Q1' and let Y denote the vector giving the number of observations removed 
from each of the four cells when q2 observations are dropped from TII _ I to produce 
Tn- I - Q2 • A correct disclosure will occur ifand only if X = Y, and this may occur only 

when ql = q2· 
Since sampling with replacement is very similar to sampling without replacement 

when n is large, we can say that for a given ql and Q2. X is approximately a multinomial 
random variable with size ql and probabilities given by II, and Y is approximately a 
multinomial random variable with size q2 and probabilities given by W. Substituting II 
for wand perfonning some other manipulations gives a fOlmula for the approximate 
probability of disclosure for a given number of cells J, maximum number of cells 
dropped k and vector II = (n" ... , nj ): 

(5) 

This fonnula has a total of (J~k) - (J + 1) summands within a rather involved summa
tion, which makes it cumbersome, but it may be useful in assessing the risk involved 
with releasing H given table with a given value of k. Further research may focus on 
finding simpler approximations for the value in this sum. 

A large number of differencing attacks were simulated, as described in 
Lucero (2010b), for a pair of tables , differing by one observation, with n = 978 and 
k E {3 ,4,5,6, 7}. The data were from the Current Population Survey March 2000 De
mographic Supplement. The simu lation led to the conclusion that the summation in (5) 
gencrally agrees with the empirical probability of a disclosure to two decimal places for 
this sample size. 

It may also be desirable to find bounds on the summation in (5) in the case in which 
II is not known. This would be useful, for example, if we were looking at the same table, 
but for a number of different universes. The der ivation of bounds makes use of the fact 
that the function in (5) is a Schur-convex function of II; for morc on Schur-convex 
functions, see Marshall and Olkin (1979) or Lucero (2010b). The Schur-convexity 
allows us to identify the most extreme cases, and leads to the following bounds: 
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(6) 

The righlhand pOl'lion of inequality (6) says that the probability of an accurate disclosure 
is at 1110St the probability that the same value of q will be chosen for each of the two 
tables. The lefthand portion gives a best case for the probability of disclosure, upon 
which we cannot improve WitJlOut modifying which cells are in the table or changing 
k (with the proviso that all probabilities are approximate). Tn particular, the best case is 
that all cells of the table include exactly the same proportion of the population, i.e. that 

TI= (j " ",j), 

5. Other Approaches 

Since the idea of a remote access system has been in existence for several years, a 
number of approaches have been proposed that differ from ours to varying degrees. and 
we survey some of them here. 

Schouten and Cigrang (2003) present a variant of the idea of a remote access system, 
which allows outstanding versatility, but is also difficult to create and expensive and la
borious to maintain. Their proposed system allows users to submit queries by email, 
written in any of several statistical programming languages. If a query is approved, the 
user receives the results by email. Before the analysis is perfolmed, an automated sys
tem determines the legitimacy of the request, with particularly difficult cases handled 
manually. As with the MAS, certain types of output are allowed and certain types are 
not, but since the code is user-generated, rather than generated by the system behind 
the scenes, it is challenging to identify all unallowable queries, This is especially true 
because, as the authors emphasize. the va lidity of a query may depend on infonllatioll 
already released as a result of previous successful queries. The authors write, "Comput
ers are simply not filst enough and the construction of a system that fully evaluates the 
risk of disclosure may be too costly and complex and therefore not feasible." Thus, ill a 
system like this, it may be necessary to perform some disclosure avoidance analysis on a 
query after the result of the query has already been returned, This is not ideal, as a query 
that is a disclosure threat might not be identified until its output has already been pro
vided. However, such a method could be effective if the users are from large institutions 
and have signed a contract describing their research and pledging to uphold confiden
tiality. In this case, the fear of a user or institution's jeopardizing its future access to the 
data may serve as a sufficient deterrent to its deliberately submitting an invalid query. 
In this type of system, a usemamc and password would be necessary so that individual 
users' actions could be properly tracked. 

Sparks et al. (2008) propose a system- Privaey-Preservillg Ana lytics®-that per
fomls a number of methods for disclosure avoidance, including keeping track of the re-
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gression models a user requests and ensuring that only a limited (although large) number 
are rilll for each possible response variab le. They also ensure that a user does not make 
too many closely related requests. 

Gomatam et al. (2005) make a distinction between sIalic servers and dynamic 
servers. A static server has a pre-determined set of queries to which it wi ll provide an 
answer. A dynamic server receives a qucly and makes a decision on whether to provide 
an answer. A dynamic server- such as the one described in Schouten and Cigrang 
(2003)- would keep a running record orall previously answered queries, and whenever 
a new query was submitted, it would be compared agai nst the list to determine whether 
providing an answer would lead to a disclosure risk when the new answer was combined 
with previously provided answers. A dynamic server has the high ly undesirable property 
that the order in which queries are submitted by the collective group of users plays a 
large role in detennining which queries are answered, and that eventually the server 
reaches a point where no new queries can be answered. Since queries are answered 
or rejected as they are received, the set of queries that are ultimately answered is not 
the result of a careful assessment of which analyses wou ld provide the most utility to 
legitimate reseClTchers while keeping disclosure risk at an acceptable level. Gomatam 
et at. (2005) write that "[w]hether dynamic servers are possible remains an open 
question." The MAS is at its heart a static server, since it operates under a set of rules 
that do not depend on previous queries. However, it operates in a dynamic fash ion, since 
the rules are checked for each new query that is submitted, rather than comparing it to 
a pre-computed list, as creating such a list would be prohibitive. In a way, the MAS 
does not fit into the framework of Gom.tam et a J. (2005), as it somet imes will provide 
regress ion output that is less detailed than the user might have liked instead of refusing 
output altogether. 

Another approach to protecting privacy from a query-accepting statistical database is 
to suppress from any tables any cells that are deemed a disclosure risk, either directly or 
indirectl y. Adam and Worthmann (1989) discuss this possibility and note that in certain 
systems, cell suppression is not a feas ible solution to the disclosure problem. 

6. Future Work 

The MAS wi ll continue to be developed within Dat.FERRETT. We will soon be testing 
the software itself and the confidentiality rules within the MAS beta prototype to 
ensure that they properly uphold disclosure avoidance standards. We will draft a set of 
confidentiality lUles for cross-tabulations, and add different types of statistical analyses 
within the system. We will explore other types of differencing attack disclosures, and 
investigate ways to prevent sllch differencing attacks. Also of potential interest is doing 
more theoretical explorations to evaluate disclosure risk. For example, it would be of 
interest to determine the probability ora correct di sclosure given that there is an apparent 
disclosure resulting from a differencing attack. if this number were small enough, it 
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could lead to a higher level of protection ror the system, as an intruder would not be 
able to be highly confident of the correctness of an apparent disclosure. 
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