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INTRODUCTION

This paper discusses the design of surveys
which use a measurement design accuracy standard
to assess the quality of data on events that
occurred at some time in the past to sample
persons. It is a sequel to an earlier paper by
these same authors (Horvitz, et al., 1987) which
argued the need to establish measurement design
standards in order to assess the level of net
systematic error, or bias, introduced by the
conventional measurement designs used in human
population surveys.

The earlier paper proposed that, in each and

every sample survey, the net bias in the
conventional measurement design being used be
routinely estimated relative to the chosen
accuracy standard. A "standard unbjased
estimate" of the net bias generated by a
particular  conventional measurement  design
requires additional collection of the survey

data with a comparable probability sample of the

population of interest using the "standard
measurement design". The difference between the
estimate (e.g., proportion experiencing a

specific event during the past year) obtained
with .the conventional measurement design and the
estimate obtained when the standard measurement
design is used is a design-based estimate of the
net bias in the conventional measurement design
relative to the chosen standard.

Finally, the earlier paper proposed that
"survey statistics be routinely adjusted for
measurement biases based on the chosen
standards, Jjust as they are now routinely
adjusted to reduce coverage and nonresponse
biases"”. No methods for such adjustments were
given, however. The proposal to adjust for
measurement biases based on chosen standards is
expanded upon in the current paper.
Specifically, an estimator, which combines the
data collected using the "standard" measurement
design with the data collected using the
“conventional" measurement design, is proposed.
The optimum survey design parameters, namely
those that minimize total data collection costs
while achieving a specified mean square error
for the composite estimator, are determined.
The optimum total sample size and the proportion
of the total sample to be allocated to the
standard measurement design have been computed
for a range of survey conditions specified:
first, by the bias ratio for the conventional
measurement design; second, by the ratio of the
variable unit costs of collecting the data for
the standard design relative to the conventional
measurement design; and, third, by the ratio of
the unit variance for the standard design
relative to the conventional design.

MEASUREMENT DESIGNS

A survey measurement design is represented by
the specific set of factor levels which define
the measurement process and which impinge upon
the outcome of that process. For example,
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the mode of interview is a measurement factor
which can occur in a given measurement design at
one of three levels, namely, personal, telephone
or mail, Factors and their levels which might
appear in the measurement design for a survey
gathering data on past events include:

FACTOR LEVELS
Mode of Interview
Respondent Rule
Administration
Interview Method

Personal, telephone, mail

Self, proxy :

Self, by interviewer

Paper and pencil, computer-
assisted

One month, two months,
three months, etc.

Bounded, unbounded

Length of Recall
Type of Recall

The choice of measurement design for a
specific survey is usually dictated by cost and
accuracy considerations, with cost often
dominating, particularly in the absence of data
on the ystematic error levels associated with
alternative measurement designs. It is this
lTack of data on the net bias in conventional
measurement designs that has - prompted the
proposal in the earlier paper that the survey
research community adopt and use a single set of
measurement design standards to estimate the
measurement bias in survey estimates relative to
the chosen standard design.

MEASUREMENT STANDARDS

An accuracy standard for measurements in
surveys can be defined as that level for a given
measurement factor which can be expected to
yield the least biased data at the current state
the art. For example, it is generally accepted
that sample persons provide more accurate data
about events occurring to themselves in the
past than do proxy respondents. Thus, a
standard unbiased estimate of the measurement
bias generated by proxy respondents in a given
survey is possible provided a design consistent
probability sample of cases 1is selected for
sel f-response measurement. The term “standard
unbiased" refers to the accuracy of a
measurement Factor level relative to the chosen
standard, which, in absolute terms, could still
be biased.

Given a set of measurement standards, one for
each of the measurement design factors, the bias
for each of the other factor 1levels can be
determined. By combining the set of measurement
standards, a "standard measurement design" (SMD)
is defined. For example, a consensus standard
measurement design might be:

o Personal Interview;

o Computer Assisted;

o Self-Respondent; and

e One Month Bounded Recall.
the actual or ‘“conventional

Similarly, mea-



surement design" (CMD) used in a given survey
can be defined as a combination of measurement
factor levels. It might be, for example, a
telephone survey, using paper and pencil, with
proxy-as well as self-respondents, together with
unbounded six-month recall. Although infor-
mation on the components of the net measurement
bias is important for establishing standards, it
is not essential that the bias associated with
each of the measurement design factor 1levels
used in a specific survey be estimated in each
and every survey. Rather, the net bias
generated by a- conventional measurement design
can be estimated by also collecting the survey
data for an independent design-consistent
probability sample selected from the population
of interest and using the SMD instead of the CMD.

ADJUSTED ESTIMATES

It has become increasingly routine to adjust
survey estimates to ' reduce coverage and
nonresponse biases. Although rarely explicitly
stated, adjustments of sample weights for unit
nonresponse, imputations for item nonresponse,
and post-stratification adjustments are all
dependent on acceptance of accuracy standards.

Similarly, whenever survey data are collected
using a standard measurement design in
conjunction with a conventional measurement

design, not only can the net measurement biases
be estimated, but the conventional measurement
design estimates can be adjusted to reduce, if
not eliminate, their measurement biases. It is
proposed to use a composite estimator for this
purpose. The estimator and its properties, for
simple random samples, are discussed briefly
below and in greater detail in the appendix.
Assume that independent simple random samples
of size n. and ng are selected, respectively,

for the conventional and standard measurement
designs. Assume further that the true mean of
Interest, p+r, is estimated by the sample mean,
Ys+ for the SMD sample and that the CMD sample

mean, y., estimates u-7. Thus, Yo is a

biased estimate of the true mean, with bias
equal to -27. The variance of a single sample

observation is assumed to be ag and ag for

the respective measurement designs. Since ag
is likely to contain additional variance
associated with the systematic error component

of each CMD observation, ag will usually be

greater than ag.
The proposed estimator is

(1)

This is a biased estimator with bias equal to
-(1-)\)7, which, in absolute value, is less than
or equal to half the bias in Yeo The value of

b= (10 (T + §) /2 + g

A which minimizes the mean square error of ; is

AopT = (62+n'é - Kn's)/(62+n'é +Kn'§)
where
nc62 = n. (ZT)Z/UE
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is the square of the bias ratio for ic (i.e.
ratio of the bias in y. to the standard error
of y.) and '

K = ai/ag

is the ratio of the unit variances. The minimum
mean square error for g is then

MSE(R) = o2(nes? + 1)/nl(n6% + D + K(1-1)] (2)
where
r = ng/(ngtn.) = ng/n.

OPTIMUM  COMBINED  CONVENTIONAL

MEASUREMENT DESIGNS

AND  STANDARD

In order to determine the best allocation of
resources between the CMD and the SMD, the total
survey cost

C=0C4+ neCe + neCs,
where C. and Cs are the respective variable costs
per sample unit for the conventional and standard
measurement designs, was minimized subject to the
requirement that the resulting

MSE(s) = o2/m.

The optimum sample sizes are

(nC)OPT = (m - 1)/62 = m(m - 1)/'52
and

(ng)gpr = ™ - TKTR (IR - 1)/_52

m[1 - TKR (IRK - 1)/p4
where R = CS/Cc is the variable cost ratio for

an SMD observation relative to a CMD observation

and pz =m &% 1s the squafe of the y. bias
ratio for samples of size m.
It follows that

(n/m)gpy = 1+ (RK - 1) ({RR - K)/RK f2
and

Topy = 1 - (R - 1)/[f% + (IRK - 1) (1 - {KR)].

for various combinations
of the bias ratio g, the cost ratio R, and the
variance ratio K are shown 1in Tables 1 and 2.
Table 1 shows the optimum proportion of the
total sample, that is x=n¢/n, to be measured

using the SMD. Table 2 shows the total sample
size inflation, n/m, for the optimum design. As
expected, with the cost ratio R fixed, a greater
proportion of the total sample_is allocated to
the SMD as the bias ratio g for y. increases.

The optimum designs
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Also as expected, with fixed bias ratio, a
smaller proportion of the total sample is
allocated to the SMD as the cost of collecting
data with the SMD increases relative to the CMD
data collection cost. With R and g both fixed,
a greater proportion of the total sample is

allocated to the SMD as the unit variance ag
increases relative to og: that is, as K

decreases.

What 1is surprising in Table 1 is that a
majority of the total sample is allocated to the
SMD in about twice as many cells as for the CMD.
This is clearly contrary to usual practice where
there is often some reluctance to use a more
costly, yet more accurate measurement design.
In this context, Table 1 suggests that even when
the measurement bias is rather small relative to
the parameter being estimated, a sizeable
proportion of the total .sample should ?e
invested in the SMD. For example, if there is
only a two percent measurement bias with a CMD
for a variable with a 100 percent coefficient of
variation, then the bias ratio for various
values of m is:

m Bias Ratio

400 0
900 0
1600 0.
2500 1
3600 1
6400 1

This simple example, together with Tab]e 1,
suggests that rather small measurement biases

can quickly dominate the MSE of estimates
derived from a conventional measurement design
and that, unless the cost ratio for the standard
measurement design 1is prohibitively high, a
significant proportion of the total sample
should be allocated to the SMD.

When #<1, the optimum design provides an

estimate, g, with the same mean squared error,

but at less cost than a sample of size m devoted
entirely to the SMD. In this situation, nDm and

. (1-x) is the proportion of the total sample
assigned to the CMD. Table 2 vreflects the
additional sample, relative to m, which is
assigned to the CMD. In general, the
incremental sample increases as the cost ratio R
increases, decreases as the bias ratio g
increases, and decreases as the variance ratio K
decreases.

Lavange and Folsom (1985) have computed
victimization rates for personal crimes with
contact adjusted to a standard measurement
design model for the 1978 National Crime Survey
(NCS). The SMD selected consisted of bounded,
personal, self-response interviews at the second
time in panel, and a recency distribution which
weighted the effect of 1-3 month recall 1.75
times that of a 4-6 month recall to account for
the joint effect of internal telescoping of
events and memory loss biases. Accepting these
adjusted victimization rates as standards, the
estimated bias ratios for the 1978 NCS actual
measurement design are shown in Table 3. The
1978 NCS measurement design included both
telephone and personal interviews, proxy- as
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well as self-respondents,
bounded interviews, six months recall of
victimization events, and interviews with the
same respondents every six months up to a total
of seven interviews.

Since the optimum design achieves the desired
mean square error at least cost, it is of
interest to determine the savings realized by
the optimum design relative to using the SMD
exclusively with sample size m. The percent
cost savings for optimum designs defined by the
same combinations of bias, variance and cost
ratios as in Table 1 are shown in Table 4. As
expected, the greatest relative savings occur
when more of the total sample can be allocated
to the CMD and when the cost ratio is high.
There is little opportunity to save money with a
CMD when its bias ratio is high.

unbounded as well as

EFFECT OF COMPLEX SURVEY DESIGNS

The optimum designs given in Tables 1 and 2
assume simple random sampling. However, these
results should remain essentially the same for
more complex survey designs involving
stratified, multistage, cluster samples. The
applicability of Tables 1 and 2 to more complex
designs is most 1ikely when both the CMD and SMD
samples are independently generated using the
same samp’ing frame and the same complex sample
design since the design effects will then be the
same, provided, of course, that the variance
ratio K for the two measurement designs remains
constant.

CONCLUSIONS

This paper continues to emphasize the need to
recognize and assess the level of systematic
error or net bijas associated with the
measurement process in human population surveys
collecting data on events that occurred sometime
in the past to sample persons. It looks at
survey designs which would use measurement
design standards to both determine and adjust
for the net bias in conventional measurement
design estimates.

The primary problem addressed 1is that of
determining the 1least costly allocation of
available resources between an inexpensive, but
biased conventional measurement design and a
more expensive, but less biased standard
measurement design in order to realize a
combined estimate which satisfies a mean square
error constraint. The set of optimum designs in
Tables 1 and 2 reinforces the need for survey
measurement design standards to provide a basis
for determining the net bias in conventional
measurement designs, at least relative to the
chosen standard. In fact, the® optimum designs
tend to allocate more than half of the total
sample to the standard design except for
situations 1in which the bias ratio for the
conventional design estimate is less than 0.5 or
the cost of collecting data with the standard
measurement is at least 50 percent greater than
with the conventional design and there is little
added variance due to the systematic errors in
the conventional design.

As stated in our earlier paper on the use of
standards, "The survey research community can
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benefit through the adoption of a single set of
accuracy standards for controllable measurement
design factors.”" This paper clearly demon-
strates that it makes sense to know the bias,
cost and variance ratios .of estimates based on
conventional survey measurement designs relative
to estimates based on .-measurement designs
defined by a set of adopted standards. Given a
single set of standards and wuse of the
measurement designs defined by these. standards
in conjunction with conventional measurement
designs, valuable information on the critical
bias, cost and variance ratios will be
realized. This information will ,not only enable
better allocation of resources between the
conventional and standard designs, but the
adjusted estimates should have greater accuracy,
at Teast relative to the chosen standards.
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APPENDIX
Our composite estimator has the form
b= (1-0)(0.5) (g + o) + Mg
= (0-5) [(1+)\)5I5 + (1')\)9(;].

We assume that yg is standard unbiased with
expectation (u+r) and that ic has expectation
(u-7). The associated bias in ; is

Bias () = - (1-\)7.

Assuming that y and y. are independent, the
variance of g is

Var(s) = (0.25)[(190)2(6% ¢ ng) +
(1-02(6% + 0],
Noting that a% includes the variance of

individual measurement biases and the covariance
of these biases with the associated true values,

we define 02 = ag and assume that K = (a§ $
ag) is most commonly less than 1. Noting
further that ‘
BiasZ(p) = (1-3)2 72
= (0.25) d2[(21)2 + 0?1 (1-0)2,

Crime Survey:

216

we define 6§ = [(27) + ¢]. The parameter & can
be viewed as the o scaled absolute bias in y.
relative to the standard. ’

In terms of the notation defined above, we
have" ~ : v )

MSE(p) = (0.25)02[(1+\)Kng! +
(1-0)2(6%n" )1,
The value of ), say Aos that minimizes MSE(;)_is

Ao = % - Kngl + ngl) +
-1

(6 + Kng! + nh) (A.1)
The form of MSE based on )\, becomes
MSE, = (KoPing) (62 + nZl) +
(6% + kgl e nth, (A.2)

To specify optimum values for the sample sizes
ng and n., we minimize the simple linear survey

cost function
~c(ns'nc).= Co + rlS‘(:S +~nC‘ CC '
subject‘to the'mean-squéred-errof constraint
MSEy(ng, n¢) = (Ko™ + m).
Note that this MSE constraint requires that we
achieve the MSE associated with the design

(ng=m, and n.=0).

We begin the solution by recasting the MSE
constraint in the form

nc(méz-K) - ng - ncnsé2 +m=0.
The associated lagrangian is therefore
F(ne, ng) = (Co + ng Cg + ne Cc)
- 7[nc(m62-K)-ns-ncnS 62 +m],

Setting the derivatives to zero, the following
three solution equations are obtained

Cs = - 7(ng 82 + 1) (A.3)
Cc = - 7(ngs? - ma? + K) (A.4)
and
0=n (m62—K) - Ne -n.n 62 +m (A.5)
¢ s “Nehg . .

Dividing Eq.

(A.3) by Eq.
result

(A.4) yields the

(Cg + C.) = (nca2 +1) + (nsd2 - ms% + K)
Defining the cost ratio R = (Cg + C) 21, we
solve the equation above for ng yielding

ng = [(nc6%+1) + R(ms% - K)] + R6%.  (A.6)

Substituting Eq. (A.6) into the MSE constraint
Eq. (A.5), one obtains after some simplification



(ne6% + 1)2 = RK.

This quadratic equation

yields the following ne
solution

(nedopt = (RK - 1) + &2, (A.7)

Our solution for ng is obtained by

substituting the n. result from Eq. (A.7) into

Eq. (A.6). This substitution leads to

(ng)ope = (TR + R6%m - RK) + R&%

m - JKiR (IRK - 1) + 62

"

m - {K+R ne - (A.8)

“Combining Eq.'s (A.7) -and (A.8) we obtain the
optimum allocation fraction r = [ng +(ng+n.)]

for the standard subsample as a function of the
bias ratio parameter

p=TTs

217

= {m (2r)+ g,

Note that g is [Bias (y¥.)+ SE(¥.)] when n. = m.

In terms of this bias-ratio for the conventional
meari y. when n.=m, we have

"opf 1- {(RR - 1) + [% + (IRK - 1) (1R )13,
. (A.9)

The optimum design's percent saving in variable

survey costs relative to the design with ng=m
and n =0 is

fopt = (IOQ)LmCS" (nsCs + ncCc)] + (mCy)

- (100 [(R - D2+ RA.  (A.10)

Recall that the design (ng=m, nc=0) was used to
establish our MSE constraint.
. Finally; it is interesting to note how much
the optimum sample size n=(ng + n.) is inflated
relative to the design (ng=m,n.=0). This
inflation factor has the form:
(nem) o = 1+ [URR - 1) (IRK - K) + TRR p7].

' (A.11)





