o STRUCTURED METHODOLOGIES WITH THE .- -
X WINDOW SYSTEM X11/RELEASE 4 AND ORACLE RDBMS 6.0

Stanley J. Sewall,* Internal Revenue Servnce

Abstract '
Windowing systems have become a standard soft-

ware component with the purchase of mostoper-

ating systems. The X Window System from
Massachusetts Institute of Technology (MIT),

has gained récognition in the computer commu-
nity as a viable desktop graphical user interface
(GUI) environment. This paper will discuss the
implementations of ORACLE RDBMS 6.0 and Or-
acle Tools ( SQL*Forms and Pro*C ) with the

X Window System X11/Release 4. Knowledge in
both areas is a prerequisite to ensuring an effi-
cient development platform.

Introduction

The X Window System bestows the Oracle pro-
grammer with a rich control over his/her work
environment. The ORACLE RDBMS 6.0. provides
the programmer with an expeditious, secure, and
centralized storage medium. In addition, Oracle’s
tools, such as SQL*Forms, SQL*Plus, and Pro*C,
are separated from the centralized database. This
separation allows for ﬂexxbxhty when engineering
applications.

The unification of the two work environments re-
sulted in a number of benefits. These include:

¢ the normalization of functions within
applications

¢ the standardization of applications between
ppjects

e the ability to develop code froma
distributed database

¢ a’Look-and-Feel’ quality on a bit-mapped X
terminal

o the ability to develop applications faster,

- without creating more errors in the
development phase of the life cycle

An encapsulation tool, such as the X Window Sys-
tem, "wraps around" existing character-based ap-
plications. The X Window System monitors

~ output and allows the construction and modifica-

*This paper was originally presented at the 1992
International Oracle User Week Conference in San
Francisco, California, September 14-18, 1992.

tion of X Window programs to interface with old
application displays.

Paper Overview

This paper will focus on current application of
the X Window System at the Internal Revenue
Service’s service center in Cincinnati. First there
will be a brief overview of the X architecture.
Then some application methodology will be
presented. Discussion of implementation will
include:

e assembling the programming team;
e adapting to the new environment;

e coping with behavior and processing
differences between the new and old
systems; and

e fine-tuning the Oracle - X Window System.

The paper will conclude with some possible con-
siderations for users and developers.

X Architecture Overview

The architecture of the X Window System is
based on the client-server model. The system is
separated into two distinct parts: the display serv-
ers, which provide window properties and moni-
tor user input, and the X Window applications,
called clients.

The division within the X architecture allows the
clients and the server either to be executed on the
same host or to reside on different machines (pos-
sibly of different types, with different operating
systems).

The X display server, usually called the X server,
is a program to monitor the input and output de-
vices. As the server receives information from a
client, it updates the appropriate window on the
display. The X server sends and receives com-
mands in the form of packets. Packets are infor-
mation of an event that has transpired within a

195 :



window and is sent to and from the server. The X
server advantage working with the client-server
model is: since the server is entirely responsible

for interacting with the X terminal, only the serv-

er program must be machine-specific. X Window
System allows the user to execute several clients
simultaneously. For example, the user can edit a
text file in one window, consuit his or her calen-
dar in a second window, read mail in a third, all
while displaying the system load averages in a
fourth window.

X client applications communicate across the net-
work with the display server by means of calls to
a low-level library of "C" Language subroutine in
file Xlib.h, which resides in the /usr/lib/in-
clude/X11 directory. Xlib.h library provides func-
tions for connecting to a particular server,
creating windows, drawing graphics, and re--
sponding to synchronous events, among others.

Application Methodology

The X Window System was introduced at the IRS
processing center to provide statistical taxpayer
information. The Oracle programming methodol-
ogy before the acquisition of the X terminals con-
sisted mostly of field-to-field consistency testing,
in which data for each field were checked to ver-
ify that they met certain tolerances established for
that field. Needless to say, this approach was
quite cumbersome. Also, the field-to-field meth-
odology performed substandard in benchmark
testing due to limited memory capacity resources
( Program methodology design will be discussed
later. )

Now, with the X Window System, the users have
character-based Digital VT420's for editing and
viewing SQL*Forms applications and batch re-
ports. The programmers use NCD 14c color X ter-
minals. The X terminals purchase was to migrate
toward Oracle CASE*Tools in the near future.
One aspect of the unique application design is
that SQL*Forms can now do preliminary consis-
tency testing before executing the main program.
Currently, the programmers are using SQL'Forms
as a menu screen to examine one

record from the database. The SQL*Forms menu
methodology elevates database querying and up-
dating of multiple records. This methodology al-
lows for data discrepancies to be found more
easily by the database designers and program-
mers.

196

Another advantage which should be mentioned
is that Pro*C applications can be executed with-
out modification in the X environment. The appli-
cations are executed in a batch mode for the user.
The user must access the SQL*Forms application
programmed to receive parameters and transfer
the input to the batch application program with
an Oracle 'HOST’ command.

Implementation

Implementation of a X Window System will be
described. This section is divided into five subsec-
tions which focus on different subjects of IRS ap-
plications of the X Window System. New users
may find the information helpful when introduc-
ing the system to their own environment.

Programmer Concurrence

When assembling an application programming
team, the optimum number of personnel is four
people, depending on the size of the project. One
person with Oracle proficiency is the Project
Leader. The second person should have an intrin-
sic understanding of the X Window System archi-
tecture. The other two programmers should
interact and capitalize on the experience of the
specialized programmers. In addition, a database
administrator should assist the programmers
with any system issues encountered during the
life cycle of the project.

With full participation among the programmers,
it is recommended that the following objectives
be implemented:

e Declare any programming considerations,
for example the initialization of
‘GLOBALS,’ before working with the two
environments. (These need to be discussed
within the group for agreement. )

e Establish realistic project deadlines.

e Develop procedures throughout the team to .
compensate for the Oracle - X Window
System platform, so as to accommodate the
individual styles of the programmers.

e Find and augment faulty implementations
of past projects in the X Window System.

e Discuss implementation and design process
early in the project. (Normalization of
application design can be achieved by using
prototype to assist programmers with X
window behavior. )



When designing a system, an application proto-
type is advisable to indicate Oracle application be-
havior in the X Window System. Testing
procedures are compulsory to ensure the Oracle -
X Window System environment is faultless in
data capture and interpretation.

New Environment

The X Window System is relatively easy to com-
prehend. The graphic user interface ( hereafter re-
ferred to as GUI ) offers programmers a
conducive development atmosphere for program-
ming. However, to master the Oracle - X Window
System, a programmer should be-ailotted time re-
sources to the GUIs and the system-level proc-
esses of the X Window System.

The first task is to become familiar with the X cli-
ents. The clients in the core distribution from MIT
perform most of the system and application ad-
ministration between both development environ-
ments. ( Some of the X Window System clients -
will be outlined in this paper. ) Another task is to
execute previous applications already developed
on the X terminal. By testing previous applica-
tions, programmers can modify past applications
to suit the X Window System and be able to antici-
pate future pr&sentahon displays for upcoming
projects.

The application programmer with the bit-
mapped terminal must be allowed to explore the
nuances of his or her new environment. Allowing
programmers to work on the X terminals will con-
sume less development time and will decrease
run-time errors due to unfamiliarity.

Application Behavior Between
Environments

The overall appearance of SQL*Forms 3.0 in the X
window is very similar to the character-based
presentation, but when testing commenced, the
differences became clear. The SQL*Forms applica-
tions in the X Window System environment ex-
hibited a lethargic cursor movement during
field-to-field consistency testing. Data are cap-
tured by ‘SELECT’ statements in the 'KEY-
NXTFLD trigger in the field-to-field testing meth-
odology. Field- to-field methodology causes in-
creased network traffic, because ‘SELECT’
statements are executed at every field for data-
base validation. Also, greater resources are being
utilized for the X terminals, because of the compe-
tition for CPU time from other X terminals on the

host. If a SQL*Forms application contains 20
fields in a screen, the field-to-field ‘SELECT" state-
ments must cluster data to validate on each field.

Because the character-based terminals use RS-232
cable, there is a direct hookup to the host. The X
terminals are connected to a DEC Server200, via
twisted-pair ethernet connection, then to the X
host. During testing, as more users utilize the X
host, the ethernet topology displayed greater per-
formance degradation than the RS-232 topology.
This performance degradation is due to the
twisted-pair ethernet connection to the host via
the DEC Server200. Despite this performance deg-
radation, the client- server architecture has dis-
tinct advantages over the RS-232 architecture.
Multiple RS-232 users displayed a performance
decrease when executing SQL*Forms applica-
tions. In the same test, the client-server architec-
ture illustrated that X terminal’s CPU and the
host’s CPU work together to process the data and
to redraw the screen faster than character-based
terminals ( see Figure 1).

Figure 1

” T oo T T RO D 0T NNl 2 - S PO uraar (PR (1)
Commands _Edit Customize _Melp
X Relationshlp of Users
..
10 o Processing Ttme

[T N

LEGEND
x-2-x - R5-232 Connection
¢-0-¢ . Ethernet Coanection

The pop-up screens are defined in the Im-
age/Modify/Page Definition Screen within
SQL*Forms 3.0. The X terminals and character-
based terminals define the X and Y coordinates
for the location of the pop-up screen. There is a
slight difference between the presentation of X
and Y coordinates between each of the respective
environments.

The "CALL(NO_HIDEY Oracle function operates
similar to the pop-up screens mentioned in the
previous paragraph. The host SQL*Forms applica-
tion utilize the 'CALL(INO_HIDEY function to dis-
play a guest SQL*Forms application over the host
SQL*Forms application. The design phase speci-
fied the 'CALLINO_HIDE)’ function would place

197



the guest SQL*Forms in the upper left-hand cor-
ner of the host SQL*Forms application. In the de-
velopment phase, the programmers used the X
terminals for the location of the guest SQL*Forms

application. In the testing phase, a common occur-

rence was the misplacement of the guest
SQL*Forms application within the host
SQL*Forms application.

While working with SQL*Forms 3.0 in the DEC-
term ( DECterm, a DEC X client, can emulate 10
different VT modes; we used VT100 mode ), the
programmers had difficulty locating the cursor
within the application. The SQL*Forms applica-
tion text was black, and the background was
white. The cursor, being the same color as the
fields, made it difficult to find the cursor on the
screen. For the best results, change the cursor at-
tributes in the resource manager, so that the cur-
sor will blink. Although, the cursor will still be
difficult to view, it will be easier to find than a
non- blinking cursor on a field.

Pro*C with X Window System

At the IRS, Pro*C applications were also devel-
oped for use with the X Window System. This
section will focus on that experience.

When developing Pro*C applications, the pro-
grammers were working in the X Window Sys-
tem environment. Since our end-users are using
character-based terminals, there were some
anomalies in the batch programs. The relation-
ship between pixels and columns are not consis-
tent between their respective environments in
output file presentation. The programmers used
the xterm program that is designed to be a termi-
nal emulator for the X Window System. The
xterm function provides VT102 compatibility for
the programs that can not use the X Window Sys-
tem directly. Even the xterm window, upon view-
ing the file, was not adequate for the
programmers. The screen representation is impor-
tant for the developers to be aware of the phe-
nomenon and to thoroughly test the output files
on a character-based terminal.

A customer wanted a Pro*C application to pro-
duce an output file that required the character-
based terminal to emulate 132 column
character-based mode. The SQL*Forms 3.0 appli-
cation can execute a command to change the ter-
minal emulation from 80 column to 132 column
mode. Upon selection of the batch file in the
SQL*Forms application, the window was altered

by using the command to change to the terminal
mode. The 132 column mode made testing the file
impossible on an X terminal. Instead, testing of
this application had to be done on a character-
based terminal, in order to meet user specifica-
tions.

Pro*C programmers must be aware of the SIgnal
handlers in the UNIX operating system. A UNIX
signal handler may interfere with the X protocol
for communicating with the X server. The X proto-
col is responsible for the communication between
the host and the client. If the UNIX signal ap-
pears in mid-stream of the X protocol, the result
could be the destruction of the window running
the Oracle application. Normally, Oracle program-
mers do not have to be concerned with the X pro-
tocol, because it is too low-level and completely
transparent. However, programmers should be
aware of the background processes, in case the
signal-handler situation arises.

Tuning the Oracle - X Window System
Environment

In testing the X Window System for our own ap-
phcatlons, we noticed a few problems that may
arise when using the Oracle - X Window System.
This section will focus on those issues and de-
scribe the refinements we have introduced to deal
with them.

The irregular movement of the cursor during
field-to-field testing was alleviated by screen-
level testing methodology. The major advantage
of screen-level methodology is a reduction in the
number of ‘SELECT’ statements to the Oracle da-

_tabase. The consistency testing was executed in a

198

'PROCEDURE’ function, defined in the form to

be executed at the last field in the screen. Within
the 'PROCEDURE’ function, one ‘SELECT" state-
ment would retrieve data to the SQL*Forms appli-
cation. If an error is encountered, a ‘GO_FIELD’
function would send a cursor to the appropriate
field and execute 'RAISE FORM_TRIGGER_FAIL-
URE' ( see Figure 2 ). This methodology allows
for faster consistency testing on X terminals, as
well as character-based terminals. During tests,
the application gave the appearance of executing
faster as the number of users increased on the
host. Actually, the appearance of executing more
rapidly has do to the X terminal’s internal RAM
ability to redraw the screen faster than the charac-
ter-based terminal.



Flgpre 2

8asple Source Code for Screen-Level Methodology

DEFINE PROCEDIRE
EAKE o uu'uﬂ-n IR
[O8 «
PROCEDURE eunm .TESY I8

PIZLDS FOBER,
TRIT L
]
................. 1000 Testing ’
IF 1GLORAL.FOMI_TYIS = 1
_91.712L08, 8 M reRnseL IR,
[ 538-Times. 8
1¥7T0 PIELDY, P13 nnd
raos X1
ovird _91.00 « JCONTROL, 88¥)

Example of Cossistensy Coding

mw M( le 4) le FIELDY AND
LINES, l) I 'lm Ilﬂ
m qt e with 1040114 (8¢

117 uul"nnl)ll l or 2113
(L] 'nnuuruumu ). Verify lime ¥ amk.‘)s
* SCEEDULE_S.FIELDY*

OGER_JAZ WII

-----------------------
---------------------

of 1048 Teok
l"u Selest Statament
* 2 TERW

&l'lm I)

IIA-I of Consistonsy Teoting

01 »
te lMllbll‘! ) - WL(ILINET,0))¢

M ( e-t-‘ m (‘ Il” CRAR(TESTLI!I '}
does i Tito_cun(rizioi) 11
1

-----------------------
......................
COMMI?_KRCORD; /* Pres Fesord te database */
EIW_PORN { ¢ SRLECTION_JINO* § )
D,
[x$3
DEORFIXS PROCEDORE
’
: ESY-RXTVLD Trigger should be defined at tarm-level
1
DEPINE TRIOGER
KBY -RXTTLD
ﬂlqﬂn v
1w ﬂlf- anlm m un_nna_nm ez

CORSISTRENCY _TRIT) ” * Call *

WETY_PISLD;
o 19
200

A Berkeley System Development ( BSD ) function
iostat prints a number of I/0O statistics that will
assist the programmer with Oracle and UNIX sys-
tem performance. The iostat function can use the
following flags ‘-¢’ or '-t.” The ’-t’ displays the per-
centage of time each CPU spent in user mode,
running low priority processes in system mode
and idling. The -’ option continuously updates
the monitoring of the system in one second inter-
vals to be specified by an integer. Since the iostat
function is device-specific, a user can also retrieve
I/0 statistics on the X terminal. Utilizing two
windows, execute the following command in one
of the windows as follows:

jostat -c X terminal name integer

In the other window, execute SQL*Forms applica-
tions while monitoring the network usage of the
desired X terminal. The display will show all disk
drives for report. Below each disk drive are "bps’
and "tps:” The 'bps’ is the average number of kilo-
bytes per second during the previous interval.
The “tps’ indicates the average number of trans-
fers per second during the previous interval. The

199

iostat function is a very useful tool to determine
the amount of CPU usage with each ‘SELECT
statement between field- to-ﬁeld and screen-level
methodologies.

Memory allocation is important because the X
server requires a tremendous amount of re-
sources for the X clients. Modulating the
SQL*Forms applications is recommended for
form-to-form control methodology. The
'NEW_FORM'’ Oracle function terminates the cur-
rent SQL*Forms application and enters the next
SQL*Forms application. Using the 'NEW_FORM'
function on large projects alleviates the need for
large memory resources, because the function
will clear the current SQL*Forms application
from memory and access the desired SQL*Forms
application. Information within the SQL*Forms
can be transferred by initializing ‘GLOBALs’
within the SQL*Forms application. In other
words, the ' NEW_FORM’ methodology relieves
some of the laborious usage of the random access
memory having to ‘swap in’ a number of
SQL*Forms applications while executing X clients
on the system.

In a particular environment, when the developers
are using X terminals and end-users have charac-
ter-based terminals, it is beneficial to remove the
"\t's from the Pro*C source file. The ’\t is a hori-
zontal tab display command used in output func-
tions. The "\t’s are displayed differently when
viewing the output file in its respective environ-
ments. By removing the "\t's and using only char-
acter spaces to denote space between words,
allows changes to be made quickly when testing
Pro*C files between environments.

Within the Ultrix header file (/usr/sys/h/
param.h), the system parameter NCLIST can be
adjusted for better performance. The NCLIST pa-
rameter is the number of clist segments. A clist
segment is 12 characters. These characters have
arrived from a terminal and are waiting to be
given a process number. Thus, enough space
should be allocated so that every terminal can
have at least one average line pending ( about 30
to 40 characters ). The parameter should be set for
multiples of 2 for each X terminal within the net-
work.

The xload function provided by MIT in the core
distribution is important for day-to-day use on
the host. The xload function ascertains system us-



age and converts the information to a histogram
GUI display. If a host system is being inundated
by users, a programmer can access another host
on the network and retrieve information. In addi-
tion, since the X Window System is network-
based and able to execute multiple clients on dif-
terent hosts, xload icons on the display can -
represent each host within the network system.
The user can monitor each host within the net-

work to observe application performance on dif-

ferent hosts.

To assist the programmers operating on several
hosts, it is advisable to customize the prompt, in
order to save time for the programmers. Modlfy
the set prompt in the login file: .

s prompt = *A{[|mA{[5mA{{7m ‘hostname’ (\!) = *

Setting the prompt to display the hostname pre- .

vents the programmer from being confused by
having a multitude of displayed windows on dif-
ferent hosts. ' . L
NCD terminals, like most other terminals, have.
an Oracle keyboard mapping resource file in the
/oracle/forms30/admin/ resource directory
called xtermned.r. Adapting the resource file is
quick and easy; however, it is not the only solu-

¢ Activate the desired window for text
copying, move the cursor to the desired
‘location within the target window, and press
the ‘copy 0 to primary’ in the xcutsel
window. ‘

- o Move the pointer to the targét window

location and press the middle button on the
-mouse to place the highlighted text.

The xcutsel function will assist programmers de-

veloping applications that standardize PROCE-
DURESs’ and "'TRIGGERs’ between applications.

During development of the SQL*Forms applica-

- tions, the pop-up screens were created on the X

terminal. The specifications instructed that a pop-

" up window should be displayed in the upper left-

tion. The xmodmap function in the core distribu- - - .

tion, allows the programmer to quickly adapt the .
X terminal keyboard to a character-based key-
board mapping. The resource file remains concur-
rent when executing ‘runformy’ or ‘iapx30° ,
commands for programmers and end- users. To
cxamine the keyboard mapping, execute the fol--
lowing command: ‘xmodmap -pk key-

boardmapping.doc’. By executing this command, " - .

the xmodmap function will create a file to assist
the programmer designating Oracle function

keys. The xmodmap function will cut down a sig-

nificant amount of incompatibilities between de-
velopers and end-users, resulting in different
resource files being utilized during project devel-
opment.

The xcutsel function in the MIT core distribution
allows the programmer to cut and paste routines.

In the DEC terminal representation in X window,

a text editor (vi) is used to edit the SQL*Forms
application, as follows:

¢ Place the pointer in the upper left-hand »-
corner and press the left button to highlight
the text to copy to the other window.

¢ After the highlighting, go to the xcutsel
menu and click the ‘copy primary to 0.’

handed corner of the display. The solution is in-
the Painter/Modify /Page Definition Menu,
which allows the programmer to specify the X
and Y coordinates of the page location. For best
results, the pop-up window must be defined in
the middle of the page in the window. The charac-
er-based terminal will displace the pop-up
screen by two columns above the designated Y
coordinate.

The ’CALL(NO HIDE)' function locates the guest
SQL*Forms within the host SQL*Forms applica- '
tion. In the development phase, problems were
never encountered. When the character-based ter-

" minals were used, the project required the guest

SQL*Forms application to be placed in the upper

- left-hand corner of the character terminal. The
.- "ANCHOR _VIEW()’ function in the guest ‘

- SQL*Forms 'KEY-STARTUP locates the
- SQL*Forms in a declared position onto the screen.

. An example is below:

ANCHOR_VIEW {1,TO_NUMBER (; GLOBAL.X), '

- TO:_NUMBER (:GLOBAL.Y}) ;.

The global XY coordinates can be initialized in
the host SQL*Forms apphcatlon before the
‘CALL(NO_HIDEY function or in the host "KEY-

* STARTUP trigger: Using the 'KEY-STARTUP

200

trigger for setting the XY global coordinates is the
most favorable way to standardize the display
throughout the project.

Fmally, when system upgrades are performed, it
is advisable to have the database administrator,
or the systems analyst, produce a full listing of
the directories on the X server host. When up-
grades to the operating system are done, a direc-
tory may not be included duiiring the system
modification. The ‘s -R directories.doc’ com-



mand, when executed in the root directory, will
list all the directories on the host. If there are any
problems encountered with the X Window Sys-
tem at startup, the database administrator can
refer to the list to notice any dxssmulantxes
between the prmtouts

Future Considerations
A number of operating systems and database

management systems have been created without '

using non-intuitive user interfaces. In the future,
users will have standard 'Pomt-and-Cllck’ ability
to retrieve-data within-a highly graphical-interac-

tive system. The 'Point-and-Click’ environmentis

more inviting than traditional character-based ter-

minals because of increased production by usmg -

GUIs.
The X Window System, or any other windowing

platform, can greatly benefit from the use of a cli- |
ent function that lets the programmer or end-user

’page through’ SQL*Forms applications. This cli-
ent would be programmer-defined to allow a
user to change a SQL*Forms application by using
a mouse to click "page-forward’ or ‘page- back-
ward.” Having a "Point-and-Click’ ability permits
the user to “turn pages’ of SQL*Forms applica-
tions. The client would have the ability to check
for any mandatory fields in the displayed :
SQL*Forms application. If a NOT NULL field is -

encountered, the cursor would go to the required -

field and execute a '/RAISE FORM_TRIG-
GER_FAILURE.’ The simple Oracle/X client func-
tion would increase the familiarity of GUIs and
would be a productive tool for programmers and
users.

A derivation of the xload client in the core distri-
bution would be a program that monitors Oracle
kernel usage. The function would display infor-
mation in a histogram format that the user can
place on the X desktop environment (see Figure 3).
The client has the benefit of being able to monitor-
ing multiple Oracle databases for the program-
mer or administrator.

As end-users utilize the X Window System more,
a package function would be useful to create a
MOTIF window from another window. The
propagation of the other MOTIF window would
contain a SQL*Forms application ( see Figure 4 ).
This function would have the same qualities as
an existing Oracle function ‘CALL(),” but will be
able to create another child X window on the
desktop screen ( see Figure 5 ). The function
would have several advantages: the application
would have a "Look-and-Feel’ appearance for
user-friendliness and the programmers could allo-
cate more time for database design, instead of
learning Xlib.h Programming.

Figure 3

201




 Figured

ﬁ!l el EII

ol

Conclusion

Recently, 75% of FORTUNE 1000 Chief Informa
tion Officers (CIOs) indicated that graphic user in-
terfaces have already been incorporated into their
companies’ computer systems, or will be utilized
in the next five years. Oracle Corporation is one
of the market leaders in the area of relational data-
base technology. As the X Window market
emerges as the norm for windowing environ-
ments on platforms, the computer community -
should expect an integration of data accessibility
and user-friendliness:

Software programmers and vendors are required
to anticipate the needs of tomorrow’s user. The
rapid success of various windows platforms so-
lidifies the premise that users want an intuitive
"Look-and-Feel’ program. To be competitive ina -

global market, designers and programmers must -

create applications to suit client's needs and ex-

pectations.

Appendix

The appllcahons discussed in this paper were
developed on the following platforms:

Minicomputer - Digital Equipment
Corporation 5810 4

Minicomputer - Digital Equipment
Corporation 5100 ‘
e MIT X Window System X11 / Release 4.0.

o NCD X Server Software 2.3.0.
(OSF/MOTIF Look-Alike)
Digital Equipment Corporation and Oracle
Corporation software include:

o Ultrix 4.2 BSD with C compiler
e ORACLE RDBMS 6.0.33.1.1

¢ Oracle SQL*Forms 3.0.16.1

o Oracle SQL*Plus 3.0.9.1.2

e Oracle PL/SQL 1.0032.03.01

202






