SETTING UP ORACLE IN A CLIENT/SERVER TCP/IP ENVIRONMENT

Irma Fisher and Mary Ann Hale *
Internal Revenue Service

Abstract

This paper will explore configuring ethernet on a
Unix system. We will discuss general ethernet
setup, including affected system files and ex-
amples of their contents. We will introduce users
to network commands for remote system access.

System files used specifically by Oracle to
facilitate running SQL*Net TCP/IP will be ex-
amined. We will explain how to define the
TCP/IP device driver for client/server access. We
will compare and contrast setting the
TWO_TASK environment variable, using “sqlnet”
aliases, or specifying the driver during logon.

We will discuss “orasrv” and the “tcpetl” utility.
This will include examples of log files and statistics.

Background

History of TCP/IP

In 1978, the International Organization for Stand-
ardization (ISO) developed the Open Systems In-
terconnection (OSI) model. This model divides
the communications process into seven layers.
This set standards that permit a wide variety in
the design of computer hardware and software,
but standardized output format of each layer to
enable diverse hardware and software systems to
communicate. Figure 1 shows how TCP/IP fits
into this OSI model.

What is TCP/IP? — Transmission Control
Protocol (TCP) / Internet Protocol (IP) is a set of
rules used to exchange information over a com-
munication channel.

Ethernet Network

Network architecture is a set of specifications,
rules and guidelines according to which network-

*This paper was originally presented at the 1991

International Oracle User Week Conference in Miami,

Florida, September 30 - October 4, 1991.

Figure 1
Ilustration of TCP/IP in the ISO OSI Model

LAppucetion Layer]
1
Ilrosontatton Layer I
i
vlﬁ Session Layer l
|

I Transport Layer

| Transaission Control Protocol
T TCP

Network layer

Int t Protocol
T Ip

Lbata~l.ink uyorj
I
Lmynical Layer I

ing hardware and software is designed and con-
structed. An ethernet network is a multipoint
architecture as illustrated in figure 2.

Figure 2
Example of Ethernet Network ArchitectureCable

[Nam
- -

Work Work Work Work
Station Station Station Station

We are assuming in this discussion that your choice
of network architecture is multipoint ethernet and
that your hardware will accommodate some form
of ethernet connection. The specific hardware used
wili be the determining factor and a detailed
description of the actual hardware installation will
be avoided. At our site, we have four nodes on our
ethernet network as shown in figure 3.

185

Figure 3

) | |
HARDM. DEVELOP
Digital Bquipnant corp pigital Equipment Corp

Model 5810 Model 3100

(sarvor) (Client)

SOFTWARE RESEAR
Sequent Computer Corp quitnl Bquiplent corp
Model 581 Hodl $500
(Sexrver/Client) (Client)

Cable

A cable connection will be necessary between
each node on your network. The discussion of
twisted pair vs. thin-wire vs. thick-wire will be -
left for another forum. At our site, we use thick-
wire ethernet.

Network Utilities

The Transmission Control Protocol (TCP) in the
transport layer provides:

port to port connections;
a reliable byte stream through: -

sequencmg,
retransmission, and

checksum;
flow control; aj\d
acknowledgements.

The Internet Protocol in the network layer provides:
addressing (Class A,B,C); '

routing; and fragmentation and reassembly
of packets. : .

Some Unix applications that use TCP/IP protocol are:

ftp — file transfer protocol;

telnet — network terminal protocol; -
NFS — network file system;

lpr — remote printing; and

rsh, rexec — remote execution.

Some Unix utilities that use TCP/IP are:

« arp — address resolution protocol resolves
internet addresses into ethernet address
(physical addresses);
finger user@host.domain;
netstat -1; .
talk user@host.domain; and

ping -1 host.domain.

186

The reasons to use TCP/IP are:
impiement a user-gro‘wn‘set of specifications;

large installed base (govemment and
education);

well known;

has implementations for most existing
platforms; and

allows communication among
heterogenedus systems.

TCP/TP Protocol

There are two types of addressmg methods:
software-based and hardware-based. Ethernet net-
works are hardware-based or “peer to peer.”
These addresses are printed on the ethernet con-
nection hardware and are unique to that interface.

The purpose of transmission protocols is to as-
sure efficient, error-free data transfer by defining
the format of data messages. TCP/IP is a com-
mon form of transmission protocol used within
an ethernet network.

TCP/IP is initialized at “multi-user” startup time.
The utilities and daemons are called from
/etc/rc file (controls the reboot function and is
generic) and /etc/rc.local (called from /etc/rc
and is site specific). The sequence of events is
shown in figure 4.

Figure 4
Sequence of Network Startup During Reboot
Late/rc Lexc/rc.local
salls rc.local ----========" > hostname - define host

ifcontig - assigns an address
to a network
interface

contigures network
intertace
. paraneters
route - seeds the route cache
routed - manages network

routing tables
listens on socket
for routing info
forwards packets
batween netvorks
sends response
packets to all
directly
connected hosts
- sends or receives
electronic mail
not a user friendly
front end

inetd - listener daemon <---- gpgendmail
for most Internet
services
opens socket for each
service in
/etc/inetd.cont
a mail delivery agent
evokes service for socket
rlogind
rehd
ftpd
telnetd
vhod - wmaintains dutabaaa used by rvho
and ruptime
listens for messages for other
rwhod servers
records information in files
located in /var/epcol/rvho

SQL*Net

SQL*Net is an Oracle utility/communication
component that allows the exchange and sharing
of information stored in different Oracle
databases via a 3rd party network. It can be used
to connect to any Oracle application and/or
database on the network.

Introduction

Our technical advisor asked us to run/setup our
systems using a client/server relationship, specifi-
cally SQL*Net, at first we were hesitant. Qur
knowledge in'this area was limited. The need to
set up the communications/ethernet (ie. tcp/ip,
decnet) then learn, understand, and install Oracle’s
SQL*Net was somewhat intimidating at first.

After breaking the assignment down into in-
dividual tasks and defining what each task ac-
complishes, however, we soon relaxed and began
to enjoy operating in the dlient/server environment.

Theory of Client/server Architecture

One theory behind client/server architecture is to
share databases with many users while off-load-
ing the processing. With SQL*Net the SQL state-
ment is parsed on the client and then sent over
ethernet to the server. The server processes the
statement and returns only the data meeting the
criteria or only the response indicating the suc-
cessful or unsuccessful completion of the command.

A client/server architecture can be used for dis-
tributed processing as well as distributed databases.
Distributed processing is the off-loading of the
processing to many CPU’s while accessing a com-
mon database. A distributed database is one that
is accessed on many systems, making it look as
though it is local. With SQL*Net, your system can
be either a client, a server, or both.

Tasks/Steps/Actions

There are many components/tasks involved in
setting up SQL*Net TCP/IP. We will look at an
overview of these and then take a closer look and
delve deeper into each step.

1. Setup communication/ethernet
* Hardware — system boards, cabling;
* . Software — internet address,configure
unix kernel, edit operating system files;
* Commands — what applications/

commands provide access across the
network?

2, Setup SQL*Net
. vgrify access to all hosts on the network;
* identify the socket for “orasrv;”

* identify the available databases on the
servers; :

* start “orasrv;”
* setup “alias;” and
* access the remote databases.

Steps to Set Up Ethernet

There-are-four main-steps used to set up ethernet.
This section lists the steps and provides a brief
description of each.

1. Modify the kernel
Change the kernel configuration file to add
entries for the Ethernet controller and net-
work-related pseudodevices. Then, re-
generate the kernel to include these
modifications. This change may include ad-
ding an entry for pseudoterminals “pty,” etc.

Some systems require the pseudodevice
“ether” to be included in the kernel file, in
order to include the Address Resolution
Protocol module used in mapping between
48-bit Ethernet and 32-bit Internet addresses.
This also needs to be done before regenerat-
ing the kernel.

2. Regen the kernel
Regenerate the system kernel to include the
above changes.

3. Make the devices
Use the MAKEDEV command to create
pseudo-terminals,if necessary, after checking
the /dev directory to see if the files already
exist.

4. Edit the tty file _
Create an entry in /etc/ttys for each pseudo-
terminal “tty” file. TTY type should be “net-
work” and no getty should be started.

Steps to Set Up TCP/IP

Three basic steps are included in the TCP/IP set
up. Although there may be other specific steps on

your platform, the following steps are generic
BSD Unix.

1. Edit /etc/relocal

Select a unique name for your system. Substitute
that name for the word “myname” in the
hostname command line at the beginning of the

187

file /etc/rclocal. Also, there should be a line in
rc.local similar to the following, anywhere after
the first line of the file:

/etc/ifconfig se0 ‘/bin/hostname® up arp
-trailers

/etc/ifconfig 100 localhost

/etc/ifconfig de0 hostl netmask 255.255.0.0.

This command configures the network hardware
interface device ‘se(’ and ‘de0’ and a software
loopback device ‘100’ on our platform.

2. Edit System Files

In order to communicate properly, all systems on
the Ethernet should have identical copies of cer-
tain files. A description and/or explanation of
each of these files and samples follow.
/etc/hosts

This file lists each system known on the network
and its corresponding Internet address. Internet
addresses consist of four bytes of data with some
used to specify a network number and the
remaining used to specify a system in that net-
work. If none of your systems connect to the Inter-
net, you can choose arbitrary Internet addresses
for your systems. '

Our system is a closed system; that is, there is no

outside network access. For this reason, we have

chosen arbitrary Internet addresses for our sys-
tems. See Figure 5. '

Figure 5

Contents of /etc/hosts file.
Ethernet System Name Alias
Address
127.0.0.1 localhost nyhost istd file entry
1.0.0.2 hardware HARDWARE .
1.0.0.1 softvare SOFTWARE
1.0.0.3 develop DEVELOP
1.0.0.4 research RESEARCH

(Since each system is identified in this file in
lower case and there is an alias in upper case,
they may be specified either way.)
/etc/hosts.equiv

This is an equivalence list of hostnames from
/etc/hosts that enables execution of “rsh” and
“rlogin” without a password. Another name for
this list is “trusted hosts.” The file consists of
trustworthy systems listed one per line. The user
accessing the system from a trusted host is re-
quired to have an account on the remote system.
This also reduces the level of security on this sys-
tem. See Figure 6.

Figure 6
Contents of /etc/hosts.equibv file.

fon system HARDWARE
software
develop

On system HARDWARE, users having an ac-
count can execute remote access commands while
logged into SOFTWARE or DEVELOP. Even

though a user logged into RESEARCH has an ac-
count on HARDWARE, they will be asked fora
password before a remote access command will
be executed on HARDWARE.

This equivalence of systems may be expanded or
constrained by creating a .rhosts file in a user’s
home directory. Additional hosts that the user
trusts can be listed in the file. For user root,
/etc/hosts.equiv is ignored, and only /.rhosts file
is used. On some systems, the tty for root login
must be designated as secure in the tty file. This is
an additional layer of security if individual users
have access from trusted hosts, but root access
needs to be restricted.

letclservices and /etc/protocols These files
don’t need to be updated to set up a TCP/IP net-
work, although /etc/services must be edited for
SQL*Net.

lusrihosts This file allows a user to log in to a
remote host by typing only the name of the host if:

» /usr/hosts is included in the search path in_
user’s login or .profile, and

» The command /usr/hosts/MAKEHOSTS
has been run by the System Administrator
during initial network setup.

lusr/spool/mqueue This file contains the net-
work syslog files. These syslog files document the
daemon error messages and information from
utiljties that occurred during the day. These files
are automatically maintained by cron.

lusr/spool/rwho - This directory contains a file
named whod.system-name for each system con-
nected to your LAN. The data for the “rwho” and
“ruptime” commands are saved in this directory.
If you remove a system from your local network,
you should remove that system’s file from this
directory.

3. Reboot

Reboot the system to allow all file changes to take
effect. .

Steps to Set Up SQL*Net
Now that ethernet is working on your system, we
can look at how to set up the system for SQL*Net.

I am assuming that Oracle, including SQL*Net
TCP/IP is installed on all systems involved. You
need to know the ORACLE_HOME and
ORACLE_SID environment variables and the
host names of the systems. If SQL*Net TCP/IP
was notinstalled-at installation time, it needs to
be installed before you can use it. '

For the purpose of this paper we have configured \

4 systems. The clients are DEVELOP and RE-
SEARCH. The server is HARDWARE.
SOFTWARE is a client and a server. Some of the
following steps are needed on the client or the
server only while others are needed on both. We
have indicated where the command needs to be
performed. In the case of a system acting as both
a client and server, all commands need to be per- -
formed. In the examples, we have indicated the -
system using “%SYSTEM-NAME->" (i.e.,
%DEVELOP->), to show where in our network
the command was executed.

An Oracle program “orasrv” makes SQL*Net
TCP/IP possible. It runs on the server asan
Oracle background process (although it is owned
by root). Orasrv’s purpose is to listen for connec-
tions from other systems and facilitate connection
to the available Oracle databases. Orasrv can be
started with various options including logging ac-
tivities, debugging, and in-band or out-band
breaks. We have found the defaults to be adequate.

1. /etc/hosts (CLIENT and SERVER)

Verify that /etc/hosts has the names of the sys-
tems you want to access. If not have your system
administrator add them. See Figure5. =~

2. telnet (CLIENT and SERVER)

Ensure the communications hardware (ethernet)
and software (tcp/ip) are working. Use the “tel-
net” command (%telnet hostname) to access each
machine you want in your network. You must
have a password on the system you are trying to
access using “telnet.”

%DEVELOP-> telnet hardware

You can also use the “/etc/ping” command to en-
sure a system is communicating with yours.

$SOFTWARE-> /etc/ping develop ... the response
should be -

develop is alive

3. /etc/oratab (SERVER)

Specify the databases that are available for use to
clients. Edit /etc/oratab. The installation script
updates this file. If a new database becomes avail-
able, you will need to add it.
$SOFTWARE-> more /etc/oratab

/etc/oratab
S:/w/oracle:Y

SHARDWARE=~> ‘more /etc/oratab

/etc/oratab
H:/usr/oracle:Y

4. /etc/services (CLIENT and SERVER)
Identify the socket used for orasrv. Oracle recom-
mends using socket 1525. Edit the /etc/services
file. Add a line to include:
SHARDWARE-> grep orasrv /etc/services
orasrvl525/tcporacle
where: ‘
orasrv = the name of the service
1525 = the socket #
tcp = protocol used
oracle = alias
The socket # used should be the same # on all sys-
tem on the network. If /etc/services does not ex-
ists, create one.

5. orasrv (SERVER)
Ensure suid bit is set for orasrv in
$ORACLE_HOME/bin. Get a long list of the

orasrv executable:
$SOFTWARE->1s -al $ORACLE_HOME/bin/orasrv

-rwsr-xr-x 1 root 235456 Apr 25 11:41
/w/oracle/bin/orasrv

The suid bit is identified by the ’s’ in the fourth
position. If the suid bit is not set, set it:
$SOFTWARE-> chmod 4755 orasrv
Also ensure ‘root’ is the owner of orasrv:
$SOFTWARE-> chown root orasrv
Start the orasrv process on the server. You can
start the orasrv. process in various ways. In
rc.local (A), using orasrv from the prompt with or
without options (B), executing tcputl via tcpctl
start (C).
(A) in rc.local
By having the proper entry in your
/etc/rc.local, orasrv will be automatically
started when your system is booted. Add

189

lines similar to the following in your
/etc/re.docal file:
$SOFTWARE-> grep oracle /etc/rc.local

ORACLE_HOME= /usr/oracle
su -oracle -c¢ $ORACLE_HOME/bin/orasrv -

Using the above entry will start orasrv with
default values. They are:

mapfile = /etc/oratab;
in-band breaks;
logging activities on;
debug activities off; and
log file = $ORACLE_HOME/
tcp/log/orasrvlog.
(B) starting orasrv at the prompt manually
$SOFTWARE-> orasrv

This starts orasrv with the default values.
(C) tcputl and tepetl
Tepetl is a script that calls tcputl. Teputl is
an Oracle utility that controls and monitor
orasrv. To start orasrv using the tcputl and
tcpctl method enter
SHARDWARE-> tcpctl start

This uses the default values above. You can
use the tcpetl script to gain statistics on
orasrv and to display the version number. To
do this enter

$HARDWARE-> tcpctl stat

tcputl: Status summary follows
Server is running:

Started
Last connection

16-JUN-91 05:15:26
20-JUN-91 13:36:08

Total connections 942
Total rejections : 3
Active subprocesses : 7
ORACLE SIDs : H
Default SID {null)

Logging mode is ENABLED
$HARDWARE-> tcpctl version

orasrv:Version 1.2.7.1.4-Production on Sun
Jun 16 05:15:25 1991 Copyright © Oracle

Corporation 1979, 1989. All rights reserved

You can also get statistics across the net-
work. For instance you can get stats on the
SOFTWARE system from the HARDWARE
system.

$HARDWARE-> tcpctl stat @software)
The output will look the same as the statis-
tics above except the ORACLE SIDs will be S.

Tepctl logs connections and other activity if
the logging mode is enabled. An example of
the contents of a log file from the hardware

system is:
SHARDWARE-> more orasrv.log

SQL*Net TCP/IP Network Server
Started at 24-JUN-91 07:37:43 by oracle
LOGGING MODE IS ENABLED

Connection request from
20-JUN=-91 13:24:3
Connection request from
20-JUN-91 13:24:58
Connection request from
20-JUN-91 13:26:23
Connection request from
20~JUN-91 13:36:03
Connection request from
20-JUN=-91 13:39:13

STATUS request from software at
20-JUN=-91 13:42:25

VERSION request from software at
20-JUN-91 13:42:49

STATUS request from research at
20-JUN-91 13:43:23 _

STOP request from hardware at 22-JUN-91
17:12:02

SQL*Net TCP/IP Network Server
Shutdown at 22-JUN-91 17:12:02

research at
develop at
research at
research at

develop at

6. checkTCP (SERVER)

190

Test SQL*Net TCP/IP using checkTCP -a. The “-
a” flag will run through all the tests. Each test can
be run separately. The tests are:

* verify orasrv is installed;

 check the socket used for orasrv;

» verify the presence of /etc/hosts file;

* list the available databases based on the

info in /etc/oratab;

 check to see if orasrv is started at system
bootup; and

» verify the tcp/ip driver is linked to the
Oracle kernel.

Logging on Using SQL*Net TCP/IP
The heart and sole for access to a remote system
is the SQL*Net TCP/IP connect string. The con-
nect string specifies the driver to use, the remote
system to access, and which database on the
remote system to access.

The syntax for the connect string is
DRIVER:remote system:ORACLE SID,buffer_size
The parameters in the connect strings are
delimited by *:".

In our case the DRIVER is TCP/IP which is al-
ways specified by T

The remote system is a system found in the
/etc/hosts file that has been configured as a serv-

er and is running orasrv. For our example, it is
"hardware’ or ‘software’.

The remote database is specified in the
/etc/oratab file on the remote system. Use the
ORACLE_SID for this field — "H’ for the
‘hardware’ system, 'S’ for the ‘software’ system.

There is also a database parameter for the buffer
size. We let this parameter default. The default
value is 4096.

Our servers, databases, and connect strings are;

server ORACLE _SID connect string
hardware H T:hardware:H
software S T:software:S.
Options

We use three main options to access remote
databases. There are variations to each. The main
difference is the first method specifies the TCP/IP
driver (see option 1), the second uses alias’ to
specify the TCP/IP driver (see option 2) and the
third method uses the TWO_TASK environment
variable (see option 3).

Option 1 — Specify the TCP/IP Driver
You can specify the SQL*Net TCP/IP driver on
the command line when calling up SQL*Plus,
SQL*Forms, etc (A); when prompted for your
username (B); or with the connect command in
sqlplus (C).
(A) command line

To access SQL*Plus on the HARDWARE sys-

tem using the command line enter:

$RESEARCH-> sqlplus scott/tiger@T:hardware:H

where:

sqlplus = the Oracle utility /application program

to run;
scott = your oracle login on the remote system;

“tiger = your oracle password on the remote
system;

@T:hardware:H =
string,

@ = delimiter to begin the connect string, :

T = use the TCP/IP driver,

hardware = hostname of system to access, and

SQL*Net TCP/IP connect

H = ORACLE_SID identifying which database on

the remote system to access.

You must enter the complete logon command
‘with no spaces and no return. -

One problem with accessing using the com- ,
mand line method is that your oracle login

name and password will show when a unix
user does a ‘w’ command or the ’ ps ax’ com-
mand.

The same syntax can be used to access
SQL*Forms, SQL*Calc, or any Oracle applica-
tion program that accepts username and
password on the command line. For example,
to access SQL*Forms on the SOFTWARE sys-
tem, enter:

$HARDWARE-> sqlforms scott/tiger@T:software:S

(B) prompted

To prevent your oracle login name and
‘password from showing, you can call up the
Oracle application program without input-
ting your login name/password by using:

SDEVELOP-> sqglplus -or-

$DEVELOP-> sglforms

When prompted for your user-name, enter
your login name/password@connect string.
Remember to enter it with no spaces and no
return until you have entered the complete
logon.

For the HARDWARE system, enter —>
scott/tiger@T:hardware:H

For the SOFTWARE system, enter —>
scott/tiger@T:software:s
(C) connect command
You can also use the ‘connect’ command
from within the local database or from
within a remote database if you want to con-
nect to the other remote database.

Fromwithin the local RESEARCH database
to access the SOFTWARE database enter: .

SQL> connect scott/tiger@T:software:$S

This will log you off the RESEARCH
database and log you onto the SOFTWARE
system database. The same command will
work from the HARDWARE system.

Option 2 — Using Alias’ to Specify the TCP/IP
Driver

The logon process is simplified by the use of
alias’. Alias’ are defined in the file /etc/sqlnet or
in SHOME/ .sqlnet. Edit the /etc/sqlnet file to
define system wide alias’. Edit your own
$HOME/ .sqlnet file to define alias’ for your use
only. When using an alias, the SHOME/ .sqlnet
file is read first.

SDEVELOP~> more /etc/sqlnet

hwT:hardware:H
swT:software:S
localP:

where:
hw = alias
sw = alias
local = alias

T:hardware:H = connect string for syshem "hardware’

T:software:S = connect string for system "software’
P: = connect string (specifies the Pipe Driver on
the localsystem)
To use the alias you have the same choices as
with option 1, on the command line (A); when
prompted (B); or using ‘connect’ (C). The dif-
ference being instead of specifying the connect
string you specify the alias.
(A) command line
To execute SQL*Plus and access the database
on the HARDWARE system, use: :
SRESEARCH-> sqlplus scott/tiger@hw
To execute SQL*Forms and access the
database on the SOFTWARE system, use:
AHARDWARE-> sqlforms scott/tiger@sw
You will notice the local alias. You can also
use the alias to access the local system using
the pipe driver in this example,
SRESEARCH-> sqlplus scott/tiger@local

(B) prompted
$DEVELOP-> sqglplus

When prompted for username, enter:

for HARDWARE system —> scott/tigerfhw
for SOFTWARE system —-> scott/tiger@sw
for local system —> scott/tigerg@local

(C) connect command
From within SQL*Plus on any database on
any system, enter:

for HARDWARE system,
SQL> connect scott/tiger@hw

for SOFTWARE system,

SQL> connect scott/tiger@sw

for local system...
SQL> connect scott/tigerflocal

The connect command logs you off the
database you were accessing and logs you
onto the database specified by the alias.

Option 3 — Using the TWO_TASK
Environment Variable

By using the TWO_TASK environment variable
you can access a remote host as though you are at-
tached directly. Once we resolved our questions-
concerning TWO_TASK, we began to enjoy run-
ning in a client/server environment. The users of .
our systems soon became confident in their

ability to access the remote database with mini-

. mal effort on their part.

When we first started usmg TCP/ IP to access the
remote database, our users were instructed to use
option 1 or 2 above. They were apprehensive.
However, once the TWO_TASK environment vari-
able was set up and unix alias’ were created to .
switch between databases, the users were amazed
with the ease of accessing the servers on the network.

Using the TWO_TASK method when you execute
an Oracle application program like SQL*Plus
provides access to the system and database
defined by the TWO_TASK variable without
having to specify the connect string.

Setting Up TWO_ TASK

As with the other options there are different ways
to define the TWO_TASK environment variable.
You can define it by typing it at the unix prompt
(A), upon login using your .login or .profile (B),
or you can create Unix alias’ to define
TWO_TASK and change from one database to
another (C). We use the Unix C shell with a com-

. bination of (B) and (C).

(A) at the Unix prompt

Notice the use of the connect strmg You can
use the previously defined alias’ in place of
the connect string also. To define the
TWO_TASK environment variable at the
Unix prompt, you enter:

(in bourne shell) For access to the HARDWARE

system,

TWO_TASK='T:hardware:H’ ;export TWO_TASK
or using the alias created above in /etc/sqinet
or SHOME/ .sqlnet,

TWO_TASK=hw;export TWO_TASK

(in C shell) For access to the SOFTWARE system,

setenv TWO_TASK ’‘T:software:S’

or using the alias created above,
setenv TWO_TASK sw '

(B) in the .login or .profile
It is convenient to define the environment
variables upon login to the system. You do
this by editing the .login (for C shell) or
.profile (for bourne shell). The entry in the
file is the same as the one you type at the
unix prompt as described above.

(in bourne shell) for access to the SOFIWARE
system,
TWO_TASK='T:software:S’;export TWO_TASK

192

(in C shell) for access to the HARDWARE
system,
setenv TWO_TASK ’T:hardware:H’

Edit the appropriate file (login or .prdfile)
and insert the line(s) above to define
TWO_TASK.

(C) alias’ in the .cshrc
If you are running with a C shell you can cre-
ate Unix alias’ to define the TWO_TASK en-
vironment variable as well as change it. Edit
your .cshrc and insert a line similar to:

alias hard “secenv TWO _TASK ‘ T:hardware: H
alias soft “setenv TWO_TASK ’ T:software:S’”
alias local “setenv TWO_TASK 'P:*”

using SQL*Net alias’, insert a line similar to:
alias hard “setenv TWO_TASK hw”

alias soft “setenv TWO_TASK sw”

alias local “setenv TWO_TASK local”
When you enter ‘hard’ at the Unix prompt,
your TWO_TASK is changed or set to the
connect string "T:hardware:H’. Once
TWO_TASK has been defined, the access to
Oracle application programs is the same as
accessing the local database. Enter ‘sqlplus’,
‘sqlforms’, ‘sqldba’, etc at the prompt. Oracle
looks for the TWO_TASK environment vari-
able to identify the database to access. To call
up SQL*Plus, enter:

$DEVELOP-> sqglplus
Enter your remote login and password that

correspond with the TWO_TASK when
prompted.

A Few Words About PRO*C

If you use the TWO_TASK environment variable
to identify the database you want to access, you
do not have to make any special changes to your
Pro*C source code. I strongly recommend usmg
TWO_TASK if you are using PRO*C.

Without TWO_TASK, you must define variables
username, password, and db_string to connect to -
a remote database:

set username = ’‘scott’;
set password = ’‘tiger’;
set db_string = ’T:hardware:H’;

where:

username = your remote oracle login name;
password = your remote password; and
db_string = the SQL*NET TCP/IP connect string.

The Pro*C program would connect to the
database using the variables defined above by in-
cluding a statement similar to:

EXEC SQL CONNECT :username IDENTIFIED BY
:password AT db_name USING :db_string;

Creating Database Links

The use of Database Links makes it possible to
gain access to remote databases while connected
to the local database. Database links are defined
using the SQL ‘create database link’ command.
They may be created as public or private. Any
user-with-connect can use-a-public-database link.
To create a public database link ‘sfwr’ on the
‘develop’ system to access tables as ‘scott’ resid-
ing on the "software’ system, you would enter:

SQL> create public database link SFWR
connect to SCOTT identified by TIGER
using ’'T:software:S’;

To access the rows in the emp table enter:
SQL> select * from emp@sfwr;

" Create a synonym to simplify this access and
make the location of the actual table transparent
by entering;:

SQL> create public synonym emp for
scott.emp@sfwr;

Now you can access the emp table by entering:
SQL> select * from emp;

Defining a Default Host

Note: The SQL*Net TCP/IP manual discusses
defining a default host for use by SQL*Net
TCP/IP. This information is not completely ac-
curate. On the Unix platform, you cannot define a
default database on the server. This results in the
inability to use default hosts when accessing Unix
to Unix. It is supposed to work accessing Unix to
VMS.

Summary

The benefits of operations in a client/server en-
vironment more than outweigh the detriments.
Some of the benefits are:

» System performance is improv'ed because
user-interface cpu usage is offloaded and the
MIPS available on clients are utilized;

* The number of backups is reduced;

* Database recovery time after a crash is
reduced;

« Control of data is easier because there is
only one copy to maintain;

193

External database connections are
transparent to users;

Productivity is enhanced;

Migration in hardware and software is more
easily managed; '

Hardware can be scaled to adapt to
changing applications; and '
Architecture is flexible. -

The detriments of operating in a client/server en-
vironment revolve around commumcatlons For
example, : - : :

« . if communications are lost, the client can
appear hung, or

» if the server goes down, all clients are
unusable.

Setting up and running Oracle in a client/server
TCP/IP environment has been a pleasant ex-
perience. The key to keeping the access method
simple is the use of the TWO_TASK environment
variable. Although we had reservations at first,
we highly recommend the use of both ethernet
and SQL*Net to access data across a network.

194

