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omplementary cell suppression is a technique

for limiting statistical disclosure in data pre-

sented in tabular form. Cell suppression in-
volves removing from publication the values of all cells
causing direct disclosure of confidential data (disclo-
sure cells), together with sufficiently many nondiscio-
sure cells (complementary cells), to ensure that a third
party cannot discover confidential respondent data by
manipulating linear relationships between released and
suppressed values. The challenge is to select comple-
mentary suppressions that provide sufficient disclosure
protection while minimizing information lost due to sup-
pression. This paper summarizes methods for comple-
mentary suppression (using mathematical networks)
based on Cox (1995, 1996). A mathematical network is
a specialized linear program defined over a mathemati-
cal graph. Networks are widely used for a variety of
applications, and standard network optimization software
is available. Network methods offer new theoretical
and practical advantages.

Consider Table 1. Assume each cell in boldface is
a disclosure cell (I, J) and for purposes here is assigned
a disclosure interval of width 50-percent of its value V(I,
J). Complementary cells must be selected to ensure
that in the final table: 10<V(1, 1), V(2, 3), V(3,4) <30,
and 5<V(4,4)<15.

Table 1

H The Cell Suppression Problem

A denotes a single two-way table, comprising m in-
ternal rows and n internal columns. A contains
(m+1)(n+1) entries: mn internal entries a, 1< i<m,l
<j<n,mrow totals a,_,,, n column totals a,__, ., and
the table grand total a_,, ... A is a positive table if a,
> 0; otherwise, A is a general table.

,n+1?

Under cell suppression, each disclosure cell (I, J) is
suppressed from publication, together with sufficiently
many complementary cells, to ensure that derived inter-
val estimates V(I, J) of a | are not narrow. Each disclo-
sure cell is assigned a continuous range of values con-
sidered too narrow, called the disclosure interval. Here,
the disclosure interval for (I, J) will be the symmetric
open interval (a,, - p,, a, + p,)- P,; > 0 is called the
(symmetric) protection limit for (I, J).

This characterizes interval disclosure where the
value of a disclosure cell is protected to within a con-
tinuous interval. For exact disclosure, only the precise
value of the cell is protected. Exact disclosure is typi-
cally used for frequency counts and p, = 1. The U.S.
Economic Censuses involve interval disclosure; the U.S.
Census of Agriculture uses exact disclosure.

Most methods are single-cell methods--they pro-
vide sufficient disclosure protection to a single suppressed
cell at a time, and they protect the entire table by apply-
ing the method iteratively. The main requirement is to
provide sufficient disclosure protection for the target cell.
The second is to incur minimum information loss, usually
measured by the number of suppressions or the total
value suppressed. All problems considered here admit
at least one feasible solution--suppress all entries in
the table. This solution is undesirable but assures that
our procedures converge. Potential disclosure in cell
combinations requires additional methods not discussed
here.
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B Mathematical Networks

A mathematical network is a linear program uniquely
suited to two-way tables. A mathematical network
consists of a set of objects called nodes, together with a
set of objects called arcs defined between ordered pairs
of nodes. Nodes are denoted by letters such as P and Q
and represented graphically as points. Arcs are denoted
by ordered pairs of distinct nodes (P, Q) and (Q, P) and
represented graphically as arrows from the first node to
the second node of the pair. An arbitrary but consistent
notion of direction between nodes is established, and arcs
oriented in that direction are called positive; arcs in the
opposite direction are called negative.

Networks represent aggregation relations. The as-
signment of quantities within a network involves net-
work flows between nodes along arcs in a prescribed
direction. Each node is assigned a node requirement.
A positive requirement indicates the amount of net out-
flow required at the node (sum of flows along arcs di-
rected out of the node minus sum of flows directed into
the node); a negative requirement indicates net inflow
required; and a zero node requirement indicates balanced
in- and outflow. Row and column nodes are denoted i
and j, and flows are denoted X and X, relative to flow
direction.

B denotes the node-arc incidence matrix of the
network: B contains one row for each node and one
column for each arc. The entry in the arc-column for
the from-node of the arc equals +1; that for the to-node
equals -1; others in the arc-column equal 0. x denotes
the column vector of variables corresponding to the arc
flows. R denotes the row vector of node requirements.
The linear constraint system of the network is: Bx =R,
x > 0. The x-values can be restricted by (upper) ca-
pacity constraints x < u, for u a column vector of non-
negative upper limits on individual flows. The relation-
ship between networks and two-way tables is illustrated
in Figure 1, the network for Table 1. Oppositely directed
arcs are not drawn.

A network optimization problem (N, ¢) consists
of a network N with a cost function ¢ to be minimized
subject to the linear constraints of the network struc-
ture. The (upper) capacitated network optimization
problem is: min ¢x, Bx=R, 0 <x<u.

Assume N is the network representation of a posi-

ROWS COLUMNS

tive table A. Given arc (I, J, +) of N, a circuit y in N
containing this arc is a sequence of distinct arcs of N
satisfying: the to-node of each arc equals the from-node
of the successive arc; and the to-node of the last arc
equals the J-column node. If successive arcsin y are in
opposite directions, it is an alternating cycle. For

g(y) =min{a;: (i, j, + or -)ey}l,

we see that there exist flows of up to g(y) units subject
to x > 0: add g(y) to each positive arc on y and subtract
g(y) from each negative arc. By reversing arc direc-
tions, flow up to g(y) units in the reverse direction is
possible. Thus, V(I, J) can assume any value in the
interval
la;; - g(Y), a, + g(y)] ;

intervals of equal width hold for other cells on y. An ,
alternating cycleis: (1,1,+),(1,4,-),(3,4,+),(3, 3,-),
(2,3,4),(2, 1, -). Flow of 10 units in either direction is
possible.

Observation. A disclosure cell (I, J) with protection
limit p,, is protected if there exists an alternating cycle y
comprising only suppressed cells that contain (I, J) and
satisfy g(7v)2= p,,. Networks enjoy a property cru-
cial to our development.

Integrality Property. If R and u and integer and ¢
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are nonconstant, then any optimal solution x is integer.

We use the Integrality Property powerfully: Iffu<1
is integer-valued, then both X, X, =0or 1 forall (i, ).
This enables using computationally efficient, continuous
network optimization to solve a dichotomous decision
problem--complementary suppression. X, denotes ei-
ther x,, or x,, or both.

® Dichotomous Network Model for
Cell Suppression

Network for Single-Cell Suppression in a Single Table

The cell suppression problem for a single table sub-
ject to minimum-number-of-complementary-suppres-
sions or minimum-total-value-suppressed can be mod-
elled as a dichotomous network. S denotes the set of
previously-suppressed cells, #S denotes the number of
cellsin S, (I, J) € S denotes the target cell--the sup-
pressed cell being disclosure-protected at the current it-
eration. USS  denotes the set of table cells that re-
main unprotected. ® = S~ (I, J) The net-
work N is run once for each unprotected suppressed
cell (I, J) €U. At each iteration, (I, J) and perhaps
additional unprotected suppressed cells (I*, J*)eU
are protected by creation of an alternating cycle con-
taining (I, J). The network N for Table 1 and target cell
(1, 1) is illustrated in Figure 2.

Nodes. There are m+n+2 nodes. The first m nodes
correspond to the m internal rows of A, the next n nodes
correspond to the n internal columns of A, and the last 2
nodes correspond to the column of row totals and the
row of column totals adding to the grand total.

Arcs. There are (m+1)(n+1) positive arcs: one from
each row node to each column node, one from each row
node to the first grand total node, one from the second
grand total node to each column node, one from the sec-
ond grand total node to the first grand total node. Simi-
larly, between the same node pairs, there are (m+1)(nt+1)
oppositely directed negative arcs. Flows are denoted by
X, andx,, 1<i<m+l,1<j<n+l

Node Requirements. All are zero.

Figure 2

Arc Capacities. The capacities of x,, and x| are
u,=landu, =0. If a,= 0, then u, = 0. Unless stated
otherwise, u,= 1 otherwise.

Are Costs. ¢, = -(c, + 1), for

(ci5, *+ €45.) . ey=1 For

Co = i

(i, =(I,J)

(I*, J°) €35, Cpye, = Croye. = 1.

For (i,j) € S, arc costs depend upon the problem type
but are subject to ¢, ¢, > #S.

The Integrality Property and the {0, 1} capacities
ensure that each arc flow in the optimal solution satis-
fies X;. =0 or 1. This permits the network optimization
and complementary cell suppression problems to be con-
nected by the following rule.

Cell Suppression Rule. Suppress cell (i, ) if X =
lorx; =1 in the optimal solution.

All flows X, are nonnegative. The large negative

arc costc,, forces x, , = 1, avoiding the trivial solution x

= 0 and forcing suppression of cell (I, J). The zero
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node requirements impose the constraints

n
E Xige

n

Y x, . 1<is<mel

J=1

<.,
-

);: xij.=; X, , 1< 37<n+1

These conditions and x,,, = 1 ensure that an optimal
solution to (&, ¢) is an alternating cycle y containing (I,
J). The arc capacity u, =0 forces x;; =0, ensuring that
the cycle is non-trivial {i.e.. k > 4). This cycle is the
protection cycle for the target cell (I, J). The only nega-
tive arc cost is c,,. The next smallest costs are
Creyw = Croy.. = 1 for previously-suppressed cells
(I*,J*) €5. Together withc,,, ¢, >#S for (i,j) & S,
this encourages the optimization to select previously-sup-
pressed cells as complementary suppressions for the tar-
getcell (IJ). As ¢;;,,c;; >0for (1, F)#(I, J),
trivial subcycles (i.e., X;;,= X;;.= 1) are avoided,
ensuring no superfluous suppressions.

Optimizing Single-Cell Suppression Under Minimum-
Number-of-Complementary-Suppressions

Arc Costs: General Table.c, =c, =#S forall (i,
) es .

Thus, the total cost c(x) in an optimal solution {x’}
satisfies: c(x")=(#S)r+s - (c,+ 1), where r equals the
minimum number of complementary suppressions
needed, and s equals the number of previously-sup-
pressed cells in the optimal protection-cycle. This is
guaranteed by the way the arc costs were stratified.
the large negative cost forces suppression of (1, J); larger
positive costs ensure r is minimized; and unit costs en-
sure that any previously-suppressed cell that can be used
will be used, but only once. If r =0, then only previ-
ously-suppressed cells are needed and the network has
verified protection.

The network optimization (N, ¢) solves the cell sup-
pression problem for general tables optimally under mini-
mum-number-of-suppressions as the solution involves
precisely r complementary suppressions.

There are typically many optimal solutions under the
minimum-number-of-suppressions criterion. One can use
the cost function to select one of minimum total value
(see Cox 1995 for details and cost functions ¢ and ¢?).

Exact disclosure in positive tables

(&, ¢) optimally solves the complementary cell sup-
pression problem for exact disclosure in positive tables
under the minimum-number-of-complementary-suppres-
sions criterion. (N, ¢’) optimally solves this problem un-
der the two-stage criterion. Moreover, the protection-
cycle for target cell (I, J) protects all complementary
suppressions made at the current iteration, thus avoiding
unnecessary iterations.

Interval disclosure in positive tables

(N, ¢’) incorporates the cell value a, into the optimi-
zation criterion as a refinement of (&, c) for the case of
exact disclosure in positive tables. A similar but refined
approach is needed for interval disclosure.

Optimal methods are not available for interval dis- -
closure in positive tables, nor for the minimum-total-
value-suppressed criterion in general and positive tables.
This stems from two factors. The first is the difficulty
ofincorporating both dichotomous decision variables and
continuous variables representing protection levels into

‘a single, computationally efficient linear programming

formulation. The second is that the complementary cell
suppression problem under the minimum-total-value-sup-
pressed criterion is NP hard, suggesting that the exist-
ence of a provably efficient (polynomial time) algorithm
is unlikely. The methods presented are heuristic meth-
ods. Interval disclosure in positive tables requires that .
the cycle(s) through target cell (I, J) permit a flow of at
least p;, units in each direction. Depending upon thea,,
this may require more than one cycle through (I, J). The
iterative step in the heuristic procedure attempts to pro-
vide sufficient protection along a single cycle, whenever
possible, as follows.

Arc Capacities And Costs. Modify N to create N’
satisfying u,, = 0 wheneveru,, = 1in Nand a, <p,. If
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(1, JIET ,cp=Liif (1, J)e&S .c.=#S.

IP(, J) is an heuristic procedure for complemen-
tary disclosure for (I, J) and cell reuse under interval
disclosure in positive tables.

IP(1,J)

INITIALIZE. Set b,=a,, q,~p,, S'=e2. @ -

denotes + or -, and & the opposite sign. In N’ and N, for
(1,7)e5S : p;=0; if i=m+1 or j=n+1, u;.=0.

STEP 1. Substitute q,, for p,; in N’. Attempt an
optimal solution (x, ) to (N’,c).

STEP 1a. If none exists, attempt an optimal solu-
tion (x, v) to (N,c).

STEP 1b. Ifnone exists, for (i,j) # (I,J) and i=m+1
or j=n+I, setu, =1 in N whenever a.>q,, and compute
an optimal solution (x, v) to (N,¢). (Reset u =0 after
Step 3).

STEP 2. Compute

g(y) =min{b, ; q:(1,7,@)€Y}
STEP3. For (i,7,@)ey, (i,7)#(I,J)
Replace by, by bje - g(7Y) and by, by by,
+ g(y) . If bje=0, set u;e=0. If u;;,=0, set U=l

Set p, = max{p,, a,-b,, a;-b,}.

1f (i,7)esUs* ,adjoin(ij)toS’ .

STEP 4. Replace q;; by q,-g(v).

" Ifq,>0, go to STEP 1.

STEP 5. (Restore superfluous suppressions.) For
(i,7)€S" withby,=b,, remove (i,j) from S* and set
p,=0.

STEP 6. Replace S by sUs* .

STEP 7. END.

Optimizing Single-Cell Suppression Under Minimum-
Total-Value-Suppressed

A sufficient complementary cell suppression pattern
for (1, J) that minimizes total-value-suppressed is obtained
from the network optimization (%, ¢), where
= 1if (i,7)€S; c. = #5 + a; if

Cyje .

(i,7) ¢S .andc,. is large.

Large-scale linear programming implementations of
heuristic procedures are due to the U.S. Census Bureau
and Statistics Canada. The Census method is based on
network optimization using flow variables z,, represent-
ing the disclosure-protection provided by suppressing cell
(i, j); arc costs dij* are based upon the cell value a,. The
cell is suppressed if either z,, z, >0 in the optimal solu-
tion. Statistics Canada uses general linear programming
and the same flow variables z, and decision rule with
arc costs dij_ based upon log(1+a;). Both seek minimum-
total-value-suppressed. However, in each case, the cost

function g z) =Edij?zij.
. i’j

is a poor surrogate for actual minimum-total-value-sup-

pressed

c(x) = 12; Qi5eXize , whereas c(x) appears
explicitly in our cost formulation, a theoretical improve-
ment. Another theoretical improvement is that our
method is equivalent to a minimum path solution.

Multiple-Cell Complementary Suppression

A method that provides disclosure protection to all
suppressed cells in a single step is a multiple-cell comple-
mentary suppression method. The existence of effi-
cient multiple-cell methods is clouded by NP hardness
results. The method below demonstrates that progress
is possible.

Problem. Given a single two-way table A and a set
of suppressions S, select a minimal set of complemen-
tary suppressions so that each row and column of the
table containing suppression(s) contains at least two sup-
pressions.
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The Problem is a necessary condition to the mini-
mum-number-of-suppressions problem, but is not a suf-
ficient condition in that there may exist patterns satisfy-
ing the two-or-more-suppressions-per-affected-row-or-
column condition for which all suppressed cells are not
contained in a cycle (i.e., fail the cycle condition). The
number of patterns satisfying the two-or-more condition
for a given table is computable and, in general, is large,
and, in practice, most two-or-more patterns also satisfy
the cycle condition or can be augmented.

Theorem. Let A be a general two-way table with
suppressions under the minimum-number-of-complemen-
tary-suppressions criterion. Let m’ (respectively, m”)
denote the number of rows of A containing suppressions
(respectively, requiring complementary suppression), and
define n’ (respectively, n”) similarly. Assume m”>n”
andm” > 1. If max {m’, n’} = 1, then the Problem can
be solved by three complementary suppressions. Oth-
erwise, m” complementary suppressions are sufficient.

The Problem can be formulated as a network opti-
mization problem (M, e), as follows. For clarity of pre-
sentation, it suffices to assume that suppression is lim-
ited to the internal entries of the table. There are two
degenerate cases, each solvable by methods established
earlier: 1) max {m’,n’} =1 and2)n”=0andn’ = 1.
The first can be solved using the network model (¥, c).
The second, which occurs when all suppressions occur
in a single column J, can be solved using (N, c), except
C;y = —(c, + 1) for (1, J)eU . The
general case, min {m’, n’}>1, is solved by a network.

NETWORK M. The node set of M equals the
node set of N. The arc set of M consists of one arc
from each row node i corresponding to a row requiring
complementary suppression to each column node j cor-
responding to a column containing suppressions (flows
denoted x,;), and one arc from each of these column
nodes to the second grand total node (flows denoted
X,y Arc capacities are: u . =0 ;uy
=0if (i, J)ES orifa;=0;u;=1 otherwise.
Node requirements are zero, except: the requirement of
a row node corresponding to a row requiring comple-
mentary suppression equals +1; that of a column node
corresponding to a column requiring complementary sup-
pression equals -1; and, that of the second grand total

node equals -(m” - n”).

The node requirements ensure a total flow of m”
units, one unit along each row, corresponding to the mini-
mum number of complementary suppressions m” required
to disclosure-protect a general table--one in each row
requiring complementary suppression. The column node
requirements ensure that each column requiring comple-
mentary suppression receives at least one complemen-
tary suppression. The distribution of flow only to col-
umns containing suppressions ensures that new column
suppression problems are not created. Figure 3 illus-
trates the network M corresponding to the complemen-
tary suppression problem for Table 1. Node require-
ments are denoted by { }; zero-capacity arcs have been
deleted.

In general tables, any basic feasible solution to M
that obeys the cycle condition is an optimal solution. For
positive tables, additional conditions often must be im-
posed. These conditions are expressible in terms of arc
capacities u and a cost function e for M. To obtain a
sufficient solution in one optimization (whenever such
exists), the condition

u;; = 0 if a;; < max{p,: (I, J)E€S}

Figure 3
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is imposed. To include a secondary optimum (e.g., mini-
mum-total-value-suppressed subject to minimum-num-
ber-of-complementary-suppressions), costs such as €
=a_can be used. (M, ¢€) can be used to generate poten-
tial multiple-cell solutions in one optimization step.

B Discussion

Our methods offer theoretical advantages over meth-
ods in use {formulating a dichotomous decision problem
explicitly as a linear optimization problem, use of mini-
mum path), and practical advantages (computational ef-
ficiency, reliance on standard methods and software, flex-
ibility in use). Stratified cost functions enable finding
optimal solutions and combining multiple optimizations

into one optimization.

An optimal solution to the cell suppression problem
of Table 1 consists of the following complementary sup-
pressions: (1, 4), (2, 1), (3, 3), and (4, 1). Thisis a
minimum-number-of-complementary-suppressions solu-
tion, which provides sufficient protection to all table cells.
It is also a minimum-total-value-suppressed solution. This
“dual-optimum” is unlikely to occur in practice.
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