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of a matrix derived from sample observations

taken from multivariate normal populations is of
fundamental importance in multivariate analysis. The
Fisher-Girshick-Shu-Roy distribution (1939), which has
interested statisticians for more than 6 decades, is revis-
ited. Instead of using K.C.S. Pillai’s method by neglect-
ing higher order terms of the cumulative distribution func-
tion (CDF) of the largest root to approximate the per-
centage points, we simply keep the whole CDF and ap-
ply its natural nondecreasing property to calculate the
exact probabilities. At the duplicated percentage points,
we found our computed percentage points consistent with
the existing tables. However, our tabulations have greatly
extended the existing tables.

T he distribution of the non-null characteristic roots

¢ Introduction

We are concerned here with the distribution of the
largest characteristic roots in multivariate analysis, when
there are roots that range from 2 to 6. Fisher-Girshick-
Shu-Roy (1939) discuss this in detail and present the
exact joint probability density function in general. This
well-known distribution depends on the number of char-
acteristic roots and two parameters m and n. They are
defined differently for various situations as described by
Pillai (1955, 1957). The upper percentage points of the
distribution are commonly used in three different types
of hypothesis testing in multivariate analysis, namely: i)
test of equality of the variance-covariance matrices of
two p-variate normal populations; ii) test of equality of
the p-dimensional mean vectors for k p-variate normal
populations; and iii) test of independence between a p-
set and a g-set of variates in a (p+q)-variate normal popu-
lation. When the null hypotheses to be tested are true,
all three types of test proposed above have been shown
to depend only on the characteristic roots of matrices
using observed samples. We could state the problem in
the following manner. Using a random sample from the
multivariate normal population, we could compute the
characteristic roots from a usual sum of product matri-
ces of this sample. We then compare the largest char-

acteristic root of the matrices with the percentage points
that we have tabulated in this paper to determine whether
or not to reject the null hypothesis at a certain probability
confidence. For this reason, the percentage points of
the largest characteristic roots of the distribution have
seriously attracted the attention of mathematical statisti-
cians for more than 6 decades. There are already many
published tables that either focus on upper percentage
point tabulations or chart the various sizes of roots.
K.C.S. Pillai is the most well known contributor in this
area. He gave the general rules for finding the CDF of
the largest root and tabulated upper percentage points
of 95 percent and 99 percent for various root sizes. Other
contributors, including D.N. Nanda (1948, 1951), F.G.
Foster (1957, 1958), D.H. Rees (1957), and D.L. Heck
(1960), will be discussed in more detail later. We will
also discuss in detail the algorithm used to create tables
for this paper. We will then compare the K.C.S. Pillai
method with ours and also the advantage in our approach.
The appendix lists the CDF’s from 2 to 6. '

¢ Cumulative Function and Historical
Work

The joint distribution of s non-null characteristic roots
of a matrix in multivariate distribution was given by
Fisher-Girshick-Hsu-Roy (1939) (see the list of CDF’s
from 2 to 6 in the appendix). In this study, we were
interested in the distribution of the largest characteristic
root with the given CDF from 2 to 6. Even though we
know the form of the joint density function, it may not be
easy to write out the CDF of the largest characteristic
root. There are two methods to find the CDF more
easily. K.C.S. Pillai (1965) suggested that the CDF of
the largest characteristic root could be presented in the
determinantal form of incomplete beta functions. To
overcome the difficulty of numerical integration of each
of the s! multiple integrals when the determinant is ex-
panded, he suggested an alternative reduction formula.
This formula gives an exact expression for the CDF of
the largest root in terms of incomplete beta functions or
functions of incomplete beta functions for various val-
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ues of s. Later, Pillai (1956b) expanded the CDF by
neglecting higher order terms and tabulated the 95-per-
cent and 99-percent percentage points. An alternative
method suggested by D.N. Nanda (1948) yielded the
same results. He started with the Vandermonde deter-
minant and expanded it in minors of a row, then repeated
applied integration by part to find the CDF of the largest
characteristic root. In this paper, we slightly modified
the D.N. Nanda notation and presented the case with
roots ranging from 2 to 6. Following these CDF’s and
the algorithm described later, we could tabulate the up-
per percentage points.

It is useful here to review some of the published
tables and see some reasons to extend the tables. K.C.S.
Pillai(1956a, 1957, 1959) published tables that focus only
on two percentage points, i.e., 95 percent and 99 per-
cent for s =2,6, m =0(1)4, and n varying from 5 to 1000.
Foster and Rees (1957) tabulated the upper percentage
points 80 percent, 85 percent, 90 percent, 95 percent,
and 99 percent of the largest root for s=2, m=-0.5, 0(1)9,
n=1(1)19(5)49,59, 79. Foster (1957, 1958) further ex-
tended these tables for values of s=3 and 4. Heck (1960)
has given some charts of upper 95-percent, 97.5-per-
cent, and 99-percent points for s=2(1)5, m=-0.5, 0(1)10,
and n greater than 4.

Without a modern computer, it used to be an under-
standably difficulty task to compute the whole CDF(3.2)
at each percentage point. This is not only tedious but
worthless. Therefore, deleting higher order terms and
keeping a few lower order terms to approximate the roots
will form a good and reasonable method for solving the
problem. But this approach involves intolerable error at
the lower percentage points, such as 80 percent, 82.5
percent, 85 percent, 87.5 percent, 90 percent, or 92.5
percent. These percentage points are usually ignored,
not because of lack of use but because of the difficulty
of computation. Traditional methods treat missing val-
ues by interpolation. However, without say 85-percent
or 90-percent points, it is difficult to interpolate 87.5 per-
cent. In recent years, the computer has gradually ma-
tured in memory, speed, and flexibility. It has greatly
changed the method we use for analyzing statistics. In
this study, we use one of the most basic properties of the
CDF and revisit this most important distribution. We
attempted to include as many percentage points as we

needed in one computer run. The upper percentage
points we included are 0.80, 0.825, 0.850, 0.875, 0.890,
0.900, 0.910(0.005), and 0.995. Different authors have
selected different m and n parameter values. We se-
lected these two parameters in such a way that all ex-
isted table values will be included. For the
parameter m=0(1)15 and the parameter
n=1(1)20(2)30(5)80(10)150,200(100)1000, our table will
give us the exact accuracy percentage points and prob-

abilities and avoid the interpolation problem.

¢ The Algorithm

In this section, we describe in more detail how we
compute the percentage points. For this study, no new
theory was created. Instead, we applied the fundamen-
tal nondecreasing function property of the CDF, i.e.,

if x, <x,,thenf(x,) < f(x,). Applying this useful
and simple property helps us find all the needed percent-
age points. Let us start with a standard procedure used
in computer algorithms to see how we generate one per-

centage point. First, choose one set of m and n values,
say m = 1 and n =2, and a very small x value, say 0 or

0.1*10™* to ensure that there are no missing percent-

age points we are interested in that are larger than this
value. Using these selected values, substitute into the
equation (3.2) to compute the probability cumulate to
this selected x value. If the computed probability equals,
say 0.95000325, then write out this computed probabil-
ity, m, n, and x values in a specified file, say f950.dat.
Then, loop the pointer back and add a very small amount

onx, say (.1*10™*, and again compute the probability.
0.1*10

If this time the computed probability is 0.9600125, then
write out this computed probability, m, n, and x values in
a different specified file, say f960.dat. Since we know
that the cumulative function is always nondecreasing and
continuous, it ensures us that any probability ranged from
0 to 1 will have a chance to be reached at least once for
some selected x values. It is possible for several spe-
cific x values to round to the same probability. This means
that we could increase either m or n by a selected value
and reset x to 0 or a small value again to repeat the
process of adding a small amount to x to compute the
corresponding probability. This process should continue
until we fill all m by n tables. Our experience shows
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that, for a chosen fixed m and n, as x increases by the
above-stated increment, the computed probabilities also
increase with multiple values rounding to the desired prob-
ability. The following simple rule has been adopted to
select a triplet X, m, and n, for a desired probability. Let
us say the desired probability y is p, and the estimate
for x to reach this probability y is Xx;:

Pr(6; <x,) =p,. We need to find a

pairsay,x, andx,  such that:
Pr(8, < x,) <p, < Pr(8; <x,)
We then can conclude by monotonicity that X, in

the interval (x;, , x:) ), is the desired estimated ordinate x

and report in the attached table. In the attached table, we
have rounded our results to four decimal accurate places.

4 Some Concluding Remarks

Pillai’s approximation method by neglecting higher
order terms has some limitations. Pillai (1954) studied
these limitations in more detail for the case s =2,3, and 4.
If we define the error of approximation of the upper
percentage points of the distribution as the difference
between the approximate and exact probabilities, then
his comparative study obtained the following conclusions:
i) There is greater agreement between the probabilities
for the approximate and exact cases in the upper 99-
percent points than in the 95-percent; ii) The difference
between the approximate and exact probabilities in the
upper 95-percent points occurs in the fifth decimal place;
that on rounding gives a difference of only one in the
fourth decimal place; iii) If we fixed the parameter m as
constant, the error of approximation increases slowly as
the other parameter increased; such increase occurs only
in the sixth decimal place or at most is unity in the fifth
decimal place when rounding.

Pillai (1959) also concluded that the approximate
formula is only appropriate for percentage points 95 per-
cent or higher. It might be adequate for those percent-
age points slightly below 95 percent. In application, it is
very clear that lower percentage points are needed.
Using the algorithm suggested in section 4, we can com-
pute any percentage points. Since our method used the

whole distribution function and not a truncated distribu-
tion, the table included in this paper is only a small por-
tion of the table generated by computer. Interested read-
ers may write to the author for more detailed tabulations.
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Upper percentage points of .900 of theta(p,m,n),
the largest eigenvalue of IB-theta(W+B)|=0,when s=2

.8464
7307
.6366
.5618
5017
4527
4122
3782
.3493
3244
.3028
2839
2671
2523
.2390
2270
2161
2063
1973
.1890
1744
.1619
1510
1416
1332
1161
.1028
.0923
.0837

.8968
.8058
7244
.6551
.5965
.5468
.5043
4677
4359
4080
3834
.3616
3421
3245
.3087
.2943
2812
.2692
.2581
.2480
2299
2142
.2005
.1885
1778
1557
1385
.1248
1135

9221
8474
7768
7138
.6587
.6106
.5685
5315
4989
4698
4439
4206
.3996
.3805
3632
.3473
3328
3194
.3070
2956
2750
2571
2414
2275
2151
.1893
.1690
.1526
.1391

m

3

9374
8742
8120
7548
7035
6577
6169
.5805
.5479
5186
4921
4681
4463
4264
4082
3914
.3759
3616
3483
.3359
3137
2941
2769
.2615
2478
2189
1961
1776
1623
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9476
.8928
.8375
.7853
7375
.6942
6550
6196
5875
5584
5319
5077
4855
4651
4464
4290
4129
.3980
.3840
3711
3475
3267
.3083
2918
2770
2457
.2208
.2004
1835

9550
.9067
.8568
.8090
7644
7234
.6860
6517
.6204
5918
.5655
5413
5191
4985
4794
4617
4453
4299
4155
4021
3776
3559
3365
3191
3034
2702
2434
2215
2032

9605
9173
.8719
8278
7862
1475
7117
.6787
.6483
.6202
.5943
5704
.5482
5276
.5085
4906
4739
4583
4436
4299
4047
3823
3622
3441
32717
2927
.2645
2412
2216

9649
9258
.8842
.8433
.8042
7676
7334
7016
6721
.6448
.6194
5958
5739
.5534
5342
5163
4995
4837
4689
4549
4293
4063
3857
3670
.3500
3137
2841
2596
.2390
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Upper percentage points of .900 of theta(p,m,n),

the largest eigenvalue of |B-theta(W+B)I=0,when s=3

=]
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9087
8229
7441
6757
6172
5672
5243
4870
4545
4260
4008
3783
3581
3400
3236
3087
2951
2826
2711
2605
2417
2253
2110
1984
1873
1642
1461
1316
1198

9346
.8667
.8001
7392
6851
6372
.5950
.5576
5244
4947
4681
4441
4224
.4027
.3847
.3682
3530
.3390
.3261
3141
2926
2738
2573
.2426
2295
.2022
.1807
.1633
.1489

.9490
.8929
8353
7810
7313
.6863
.6458
.6093
5764
.5466
5196
4951
4726
4521
4332
4158
3997
3848
3709
.3580
3347
3141
2960
2798
.2652
.2347
2105
.1908
1744

m
3

9582
9103
.8598
.8109
7652
7230
.6845
.6493
6172
5878
5610
.5363
5137
4927
4734
4555
4388
4233
4088
.3953
3707
.3490
3296
3122
.2966
.2636
2371
2155
1974
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9646
9229
8779
.8335
7912
7518
7152
.6814
.6503
6217
5952
.5708
5481
5271
.5076
4894
4725
4566
4417
4278
4023
3797
3594
3411
3246
.2896
2613
2380
2185

9692
.9323
8918
8512
8120
7749
7403
.7080
6779
6501
.6242
.6001
5776
5567
5372
5189
5018
4858
4707
4565
4304
4071
.3861
3672
.3500
3133
.2835
2588
2381

9728
9397
9028
.8654
.8289
7941
7612
7303
7013
.6743
.6490
.6254
.6033
5826
5632
.5450
5278
5117
4965
4821
4556
4319
4104
.3909
3732
3351
.3040
2782
.2563

9757
9456
9118
8771
.8430
.8101
7789
7493
7215
.6953
.6707
.6476
.6259
.6054
.5862
.5681
5510
.5349
.5196
.5052
4785
4544
4326
4127
3945
3553
3232
.2963
2735
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Upper percentage points of .900 of theta(p,m,n),
the largest eigenvalue of IB-theta(W+B)|=0,when s=4

.9394
.8744
.8095
1497
.6961
.6485
.6063
.5688
5354
.5055
4786
4543
4323
4123
.3940
3773
3619
3476
.3345
3222
.3003
2811
2642
.2492
2358
2079
1858
.1680
1533

.9545
9022
.8473
7947
.7460
7016
.6614
.6250
5920
5621
.5348
.5100
4873
4664
4472
4295
4131
3978
3837
3704
.3465
3255
.3068
.2902
2752
2438
2187
.1983
1814

9636
9198
8723
.8255
7812
7399
7019
.6670
.6350
.6056
.5786
.5538
5309
.5097
4901
4718
4549
4390
4243
4104
3852
3629
3430
3251
.3090
2748
2474
2250
.2063

m

3

.9696
9319
.8901
.8481
.8075
7691
7333
.7000
.6692
.6406
.6142
.5896
.5668
5456
5258
5074
4901
4740
4588
4446
4185
.3953
3745
3557
3387
3024
2732
.2490
.2288
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.9739
.9409
.9036
.8654
.8280
7923
7585
7268
6972
.6695
.6437
.6196
5971
.5761
5564
5379
.5206
.5042
4889
4744
4478
4239
4024
.3830
.3653
3274
2965
2710
.2494

9772
9477
9140
.8791
.8445
8110
7792
7490
7206
.6939
.6688
.6453
.6232
.6024
.5829
.5645
5472
.5308
5154
.5008
4738
4495
4276
4076
3894
3501
3180
2912
.2686

9797
9531
.9224
.8902
.8580
.8267
7965
7678
7405
7148
.6904
6675
.6459
.6254
.6062
.5880
5707
.5544
.5390
.5243
4972
4727
4504
4300
4114
3711
3379
.3101
.2865

9817
9575
9293
.8995
.8694
.8398
8113
7838
577
7329
7093
.6870
.6658
.6458
.6268
.6088
5918
5756
5602
.5456
5184
4937
4712
4506
4316
.3905
.3564
3277
.3033
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Upper percentage points of .900 of theta(p,m,n),
the largest eigenvalue of [B-theta(W+B)|=0,when s=5

.9568
.9062
.8526
.8008
7526
7085
.6684
.6321
5991
.5691
5418
5168
4940
4730
4536
4358
4192
4038
3895
.3762
3520
.3307
3118
.2950
.2798
2479
2225
2018
1847

.9664
.9249
.8793
.8338
7903
7497
7121
6774
.6455
.6161
.5891
5641
5411
5198
.5000
4816
4644
4484
4335
4194
.3939
3712
3510
3328
3164
.2816
2537
.2308
2116

9725
9373
.8976
8571
8177
.7802
7449
7120
6814
.6529
.6265
.6019
5790
5577
.5378
5192
.5018
4855
4701
4557
4293
4057
.3845
3654
3480
3111
2811
2564
2357

m

3

9767
9462
9111
8746
.8385
.8038
7707
7395
7102
.6828
.6571
.6330
.6105
.5894
.5696
5510
.5336
5171
.5016
4869
4600
4357
4139
3941
3760
3373
.3058
2796
2575
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9798
.9529
9213
.8882
.8550
8226
7916
7620
7340
7076
.6827
.6593
.6373
6165
.5969
5785
.5610
.5446
.5290
5142
4870
4623
4400
4197
4012
3611
3283
.3008
2776

9822
.9580
.9295
.8991
.8684
.8381
.8089
7808
7541
7287
7046
.6819
.6603
.6400
.6207
.6024
.5852
.5688
5532
5384
5110
4862
4636
4429
4239
3829
.3489
.3204
.2962

9840
.9622
.9361
.9080
.8794
8511
.8234
7968
7712
.7468
7236
7015
.6805
.6605
.6416
6236
.6066
5903
5748
.5601
5327
.5078
4849
4640
4448
4029
.3680
.3387
3136

9856
.9656
.9415
9155
.8888
.8621
.8359
.8105
.7860
7626
7401
7187
.6983
.6788
.6602
.6425
6257
.6096
.5943
5797
5524
5274
.5045
4834
4639
4214
3858
3558
.3300
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Upper percentage points of .900 of theta(p,m,n),
the largest eigenvalue of IB-theta(W+B)I=0,when s=6

9677
9272
.8824
.8376
7946
7542
7168
.6822
.6503
6210
.5939
5690
.5459
.5245
.5046
4862
4689
4529
4378
4237
.3980
3752
3548
.3365
3199
.2849
2567
2335
2142

9741
9404
9020
.8625
.8238
.7868
7519
7192
.6888
.6604
.6340
.6094
.5865
.5651
.5452
5265
.5090
4926
A771
4626
4359
4121
.3907
3714
.3539
3164
.2861
2610
.2400

9784
.9496
9159
.8806
.8455
8114
7788
7480
7190
.6917
.6661
.6421
.6196
.5985
5787
.5600
5424
5259
5103
4955
4683
4438
4218
4017
.3835
3442
3122
.2856
2631

m

3

9815
9562
.9263
.8944
.8623
.8307
.8003
712
7435
7174
6927
.6693
.6474
.6266
.6070
.5885
5710
.5545
5388
.5240
4965
4716
4491
4285
4097
3691
3358
.3078
2842
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.9838
.9614
.9344
.9053
8757
8464
8178
.7903
7640
7389
7151
.6924
.6710
.6507
.6315
.6132
5959
5794
5638
.5490
5214
4963
4735
4526
4334
3917
3573
3283
.3036

.9856
.9654
.9408
9142
.8867
.8593
8324
.8063
7812
572
7342
7124
6915
6717
.6528
.6349
.6178
.6015
.5860
5712
.5437
5185
4955
4744
4549
4124
3771
3472
3217

.9870
.9687
9461
9215
.8959
8702
.8448
.8201
7961
7730
7509
7297
7095
.6901
6717
.6541
.6372
.6212
.6058
5912
.5637
5386
5155
4942
4746
4315
3954
3648
.3386

.9882
9714
9506
.9276
.9037
8795
.8555
.8319
.8090
7869
7655
.7450
7254
.7065
.6885
6712
.6547
.6389
.6237
.6092
5820
5569
.5338
5124
4927
4491
4125
3813
3544





